9(2) 信号与系统 周建华 光电学院教学课件_第1页
9(2) 信号与系统 周建华 光电学院教学课件_第2页
9(2) 信号与系统 周建华 光电学院教学课件_第3页
9(2) 信号与系统 周建华 光电学院教学课件_第4页
9(2) 信号与系统 周建华 光电学院教学课件_第5页
已阅读5页,还剩66页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

9 7AnalysisandcharacterizationofLTIsystemsusingtheLaplacetransform 9TheLaplaceTransform 9TheLaplaceTransform 9 7 1Causality TheROCassociatedwiththesystemfunctionforacausalsystemisaright halfplane Forasystemwitharationalsystemfunction causalityofsystemisequivalenttotheROCbeingtheright halfplanetotherightoftheright mostpole Example9 179 18FindtheROCofthefollowingsystemsanditscausalproperty a b 9TheLaplaceTransform Example9 19Determinewhetherornotthefollowingsystemiscausal 9TheLaplaceTransform Conclusion 1 Thesystemiscausal theROCistotherightoftherightmostpole Theconverseisnotingeneraltrue unlessthesystemfunctionisrational 9TheLaplaceTransform 2 Asystemisanticausalifitsimpulseh t 0fort 0 Thesystemisanticausal theROCistotheleftoftheleftmostpole Theconverseisnotingeneraltrue unlessthesystemfunctionisrational 9TheLaplaceTransform 9 7 2Stability AnLTIsystemisstableifandonlyiftheROCofitssystemfunctionH s includestheentirej axis i e Re s 0 2 AncausalsystemwithrationalsystemfunctionH s isstableifandonlyifallofthepolesofH s lieintheleft halfofthes plane i e allofthepoleshavenegativerealparts 9TheLaplaceTransform Example9 209 21Determinewhetherornotthefollowingsystemsarestable a b 9TheLaplaceTransform 9 7 3LTIsystemscharacterizedbylinearconstant coefficientdifferentialequations linearconstant coefficientdifferentialequations 9TheLaplaceTransform Systemfunction 9TheLaplaceTransform Zerosofthesystemfunction polesofthesystemfunction Accordingtoitspoles wecandetermineitsstableandcausalproperties 9TheLaplaceTransform a todetermineh t b Accordingtox t andinitialrestcondition todeterminey t Example9 23Determineh t 9TheLaplaceTransform Example9 25SupposeanLTIsystemwithinputandoutput Whetherornotthesystemisstableorcausal Determinethedifferentialequationofthesystem 9TheLaplaceTransform 9 8systemfunctionalgebraandblockdiagramrepresentations 9TheLaplaceTransform 9 8 1systemfunctionsforinterconnectionsofLTIsystems a Parallelinterconnection 9TheLaplaceTransform h1 t H1 s h2 t H2 s x t y t b Seriesinterconnection 9TheLaplaceTransform h1 t H1 s h2 t H2 s x t y t a Feedbackinterconnection 9TheLaplaceTransform 9TheLaplaceTransform Example FindthesystemfunctionH s ofthefollowingsystem H1 s H2 s H1 s H3 s x t y t 9 8 2blockdiagramrepresentationsforcausalLTIsystemsdescribedbydifferentialequationsandrationalsystemfunctions Anadder Multiplicationbyacoefficient Anintegrator 9TheLaplaceTransform Thebasicoperations 9TheLaplaceTransform Blockdiagram 1 directform 直接型 2 cascadeform 级联型 3 parallelform 并联型 9TheLaplaceTransform 补充 根据简化的梅森公式 可由系统函数画出直接型方框图 1 名词定义闭合环路 是一条顺向的闭合回路 前向路径 从系统输入点到系统输出点 不包含任何环路的信号流通路径 1 Directformoftheblockdiagram H1 s H2 s H1 s H3 s x t y t 9TheLaplaceTransform 2 简化的梅森公式 第i条闭合环路的传输值 所有闭合环路的传输值之和 第k条前向路径的传输值 所有前向路径的传输值之和 9TheLaplaceTransform ThebasicexpressionofH s 9TheLaplaceTransform 一般情况将H s 写成以下形式 9TheLaplaceTransform Example9 28 Solution 9TheLaplaceTransform Example9 29 Solution 3 x t y t 2 9TheLaplaceTransform Example9 30 Solution 9TheLaplaceTransform 9TheLaplaceTransform Example9 31 Solution 3 x t y t 2 6 4 2 9TheLaplaceTransform 9TheLaplaceTransform Example 4 x t y t 7 6 5 9TheLaplaceTransform 也可由方框图 根据梅森公式 写出系统函数的表达式 2 Cascadeformoftheblockdiagram Hi s isfirst orderorsecond ordersystem Ifsisrealpole Hi s isfirst ordersystem Ifsisconjugationimaginarypole Hi s issecond ordersystem 9TheLaplaceTransform 即 把H s 因式分解为一阶或二阶子系统级联 相乘 的形式 9TheLaplaceTransform Example9 30 Solution first ordersystem first ordersystem 9TheLaplaceTransform 1 x t y t 2 x t y t 1 x t 2 y t 9TheLaplaceTransform Example Solution first ordersystem second ordersystem 9TheLaplaceTransform 1 x t y t 2 x t 2 y t 9TheLaplaceTransform 1 x t 2 2 y t 3 Parallelformoftheblockdiagram Hi s isfirst orderorsecond ordersystem 9TheLaplaceTransform 即 把H s 部分分式展开为一阶或二阶子系统并联 相加 的形式 9TheLaplaceTransform Example9 30 Solution first ordersystem first ordersystem 9TheLaplaceTransform 1 x t y t 2 9TheLaplaceTransform Example Solution 9TheLaplaceTransform first ordersystem second ordersystem 9TheLaplaceTransform 1 x t y t 2 x t 2 y t 9TheLaplaceTransform 1 y t 2 x t 2 y t 9 9theunilateralLaplacetransform 9TheLaplaceTransform 如果拉普拉斯变换的积分下限变为 我们把这种变换称为单边拉普拉斯变换 Definition theunilateralLaplacetransform 9TheLaplaceTransform 9TheLaplaceTransform Note Ifx t 0fort 0 itsunilateralLaplacetransformisidenticaltoitsbilateralLaplacetransform2 TheROCofunilateralLaplacetransformmustbearight halfplane 3 Ifx t 0fort 0 itsinverseunilateralLaplacetransformisidenticaltoitsinversebilateralLaplacetransform Example9 329 339 34DeterminetheunilateralLaplacetransformforthefollowingsignals a b c 9TheLaplaceTransform Example9 359 36DeterminetheinverseunilateralLaplacetransformforthefollowingsignals a b 9TheLaplaceTransform Table9 3 9 9 2propertiesoftheunilateralLaplacetransform 9TheLaplaceTransform note MostpropertiesoftheunilateralLaplacetransformissametothoseofthebilateralLaplacetransform thesignificantdifferencesbetweenthemarethepropertiesofdifferentiationandintegrationinthetimedomain 6 Differentiationinthetimedomain 9TheLaplaceTransform 9TheLaplaceTransform 9TheLaplaceTransform Example wehaveknown DeterminetheunilateralLaplacetransformofx t 9TheLaplaceTransform Solution Fromtheabovefigure wecanknow Method1 accordingtoproperty 9TheLaplaceTransform Method2 accordingtothedefinition 8 Integrationinthetimedomain 9TheLaplaceTransform 9 Theinitial andfinal valuetheorems Ifx t 0fort 0andx t containsnoimpulsesorhigher ordersingularitiesatt 0 then 9TheLaplaceTransform 9 9 3solvingdifferentialequationsusingtheunilateralLaplacetransform UsethedifferentiationintimedomainpropertyoftheunilateralLaplacetransformtosolvelinearconstant coefficientdifferentialequationswithnonzeroinitialconditions 9TheLaplaceTransform Example9 38Asystemcharacterizedbythedifferentialequation Withinitialconditions Consider 9TheLaplaceTransform 9TheLaplaceTransform Solution ApplyingtheunilateralLaplacetransformtobothsides 9TheLaplaceTransform Ifa 2 3 5 then Zero inputresponse 零输入响应 Zero stateresponse 零状态响应 Example9 38Asystemcharacterizedbythedifferentialequation Withinitialrestconditions Consider 9TheLaplaceTransform 9TheLaplaceT

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论