已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
-第二章习题1 初始时刻位于的质点在某时刻的位置为,其中,求格林应变张量的分量。解 采用拉格朗日描述法,得由格林应变张量,得习题2 证明是二阶对称张量的分量,而不是任何张量的分量。证明 (1) ,显然可得其对称性对于笛卡尔直角坐标系和,各坐标轴之间的方向余弦如下表由弹性力学理论知,恰与张量定义相吻合,是二阶对称张量的分量(2)设有一剪应变张量,其分量取任一矢量,则,但不能缩并为,与假设是张量矛盾。根据张量的商判则,不是任何张量的分量。习题3 为求平面应变分量、,将电阻应变片分别贴在方向,与成和方向上,测得应变值以、表示,试求、解 平面应变状态下,沿方向,与成和方向上的方向余弦分别为根据方向线元的工程正应变公式,得求得习题4 假设体积不可压缩位移与很小,在一定区域内已知,其中,为常数,求。解 题目条件适用小变形,得体积不可压缩, 即习题5 在平面应变状态下,使用直角坐标和极坐标中应变分量、位移分量的转换公式,写出在极坐标中的应变和位移的关系式。解 在平面应变状态下,由应变分量转换公式,得 (1)代入,即 (2) (3) (4)因此, (5) (6)将式(2)-(6)代入式(1),得平面应变状态下,极坐标中的应变和位移的关系式:习题7 证明由下式确定的应变恒满足变形协调方程,。证明 对于单值连续位移场,并存在三阶以上连续偏导数时,偏导数的值与求导顺序无关关于,对称;关于,对称对于排列符号关于,反对称;关于,反对称即应变恒满足变形协调方程,习题8 假定物体被加热至定常温度场时,应变分量为;,其中为线膨胀系数,试根据应变协调方程确定温度场的函数形式。解 由应变协调方程,得又定常温度场应满足拉普拉斯方程,故的函数形式中不应含有高于或等于2次的项温度场的函数形式为其中,和均为常数。习题9 试导出平面应变轴对称情况下的应变协调方程解 轴对称平面应变情况下,应变分量为因此,平面应变轴对称情况下的应变协调方程为习题10 在某一平面轴对称变形情况下,轴向应变为常数,试确定其余两个应变分量和的表达式(材料是不可压缩的)解 平面轴对称情况下,变形协调条件为:当材料不可压缩时,体积应变为零,即,代入上式,得解得,式中,C是右边界条件确定的常数习题11 试问什么类型的曲面在均匀变形后会变成球面。解 均匀变形状态可表示为其中,为常量设均匀变形前的坐标为,则变形后的坐标为曲面在均匀变形后变成球面,即略去刚体位移,当、为主轴时,变形前的坐标满足变形前半轴为,的椭球面在均匀变形后会变成球面。特别的,当时,表示球面均匀变形后仍为球面。习题12 若物体内各点的位移分量为,其中,均是常数。试证明,物体内所有各点的应变分量为常数(这种变形状态称为均匀变形),并分别证明在均匀变形后的物体内有:(1)直线在变形后仍然是直线;(2)相同方向的直线按同样的比例伸缩;证明 由位移分量求得物体内各点的应变分量为 (1)即物体内所有各点的应变分量为常数(均匀变形)(1)若物体内任意一点,变形后变为坐标和之间的关系为 (2)变形前,直线上的点,和满足 (3)将式(3)代入式(2),并整理,得 (4)式(4)表明直线在均匀变形后仍然是直线(2)变形前连接两点,的直线长度为,方向余弦为、,变形后的两对应点,的直线长度为,方向余弦为、(图2.1)将式(2)代入上式,得 (5)将上式两端除以,得 (7)而 (6)对于方向相同的直线,具有相等的方向余弦、,在均匀变形情况下,由式(6)和(7),知为常数。即相同方向的直线按同样的比例伸缩;习题13 物体的位移对称于坐标原点,试用球坐标和笛卡儿坐标表示位移分量和应变分量。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全宣传短句集锦讲解
- 【听力强化】2025-2026学年四年级英语上学期听力专项训练卷(人教PEP版)
- 2025年低空无人机测试员年终工作总结(适航认证专项)
- 讲解员面试实战技巧
- 2025云南迪庆州香格里拉市公安局招聘警务辅助人员11人备考题库及答案详解(夺冠系列)
- 福建省宁德市屏南县公安局招聘警务辅助人员9人备考题库含答案详解(突破训练)
- 生控专员面试通关指南
- 2025年河北唐山玉田县公开招聘社区工作者41人备考题库含答案详解(黄金题型)
- 2026杭州银行信用小微事业部秋季校园招聘备考题库附答案详解(夺分金卷)
- 2025年台州三门县人民政府海游街道办事处招聘编外劳动合同用工人员2人备考题库及答案详解(有一套)
- 网络安全知识竞赛题库及答案 1000题
- 《植物组织培养技术》课件
- 电焊工初级培训
- 改革开放史知到智慧树章节测试课后答案2024年秋临沂大学
- 基尔霍夫定律课件(共17张课件)
- 【MOOC】英文技术写作-东南大学 中国大学慕课MOOC答案
- wcc培训教程课件
- DB41T 2437-2023 养老机构院内感染预防与控制规范
- 中职教育-数学(基础模块)下册课件:第七章-平面向量.课件
- 职业技术学校安全保卫管理专业人才培养方案
- 2024年广东省佛山市艺术创作院公开招聘历年公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
评论
0/150
提交评论