




已阅读5页,还剩85页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 Chapter2 THEMATHEMATICSOFOPTIMIZATION 2 TheMathematicsofOptimization ManyeconomictheoriesbeginwiththeassumptionthataneconomicagentisseekingtofindtheoptimalvalueofsomefunctionconsumersseektomaximizeutilityfirmsseektomaximizeprofitThischapterintroducesthemathematicscommontotheseproblems 3 Part1Unconstrainedoptimization 4 MaximizationofaFunctionofOneVariable Simpleexample Managerofafirmwishestomaximizeprofits f q Quantity Maximumprofitsof occuratq 5 MaximizationofaFunctionofOneVariable Themanagerwilllikelytrytovaryqtoseewherethemaximumprofitoccursanincreasefromq1toq2leadstoarisein f q Quantity q 1 q1 6 MaximizationofaFunctionofOneVariable Ifoutputisincreasedbeyondq profitwilldeclineanincreasefromq toq3leadstoadropin f q Quantity q 7 FirstOrderConditionforaMaximum Forafunctionofonevariabletoattainitsmaximumvalueatsomepoint thederivativeatthatpointmustbezero 8 SecondOrderConditions Thefirstordercondition d dq isanecessaryconditionforamaximum butitisnotasufficientcondition Quantity Iftheprofitfunctionwasu shaped thefirstorderconditionwouldresultinq beingchosenand wouldbeminimized 9 SecondOrderConditions Thismustmeanthat inorderforq tobetheoptimum and Therefore atq d dqmustbedecreasing 10 SecondDerivatives ThederivativeofaderivativeiscalledasecondderivativeThesecondderivativecanbedenotedby 11 SecondOrderCondition Thesecondorderconditiontorepresenta local maximumis 12 RulesforFindingDerivatives 13 RulesforFindingDerivatives aspecialcaseofthisruleisdex dx ex 14 RulesforFindingDerivatives Supposethatf x andg x aretwofunctionsofxandf x andg x existThen 15 RulesforFindingDerivatives 16 RulesforFindingDerivatives Ify f x andx g z andifbothf x andg x exist then Thisiscalledthechainrule Thechainruleallowsustostudyhowonevariable z affectsanothervariable y throughitsinfluenceonsomeintermediatevariable x 17 RulesforFindingDerivatives Someexamplesofthechainruleinclude 18 ExampleofProfitMaximization Supposethattherelationshipbetweenprofitandoutputis 1 000q 5q2Thefirstorderconditionforamaximumisd dq 1 000 10q 0q 100Sincethesecondderivativeisalways 10 q 100isaglobalmaximum 19 FunctionsofSeveralVariables Mostgoalsofeconomicagentsdependonseveralvariablestrade offsmustbemadeThedependenceofonevariable y onaseriesofothervariables x1 x2 xn isdenotedby 20 Thepartialderivativeofywithrespecttox1isdenotedby PartialDerivatives Itisunderstoodthatincalculatingthepartialderivative alloftheotherx sareheldconstant 21 CalculatingPartialDerivatives 22 CalculatingPartialDerivatives 23 PartialDerivatives Partialderivativesarethemathematicalexpressionoftheceterisparibusassumptionshowhowchangesinonevariableaffectsomeoutcomewhenotherinfluencesareheldconstant 24 Elasticity ElasticitiesmeasuretheproportionaleffectofachangeinonevariableonanotherunitfreeTheelasticityofywithrespecttoxis 25 ElasticityandFunctionalForm Supposethaty a bx othertermsInthiscase ey xisnotconstantitisimportanttonotethepointatwhichtheelasticityistobecomputed 26 ElasticityandFunctionalForm Supposethaty axbInthiscase 27 ElasticityandFunctionalForm Supposethatlny lna blnxInthiscase Elasticitiescanbecalculatedthroughlogarithmicdifferentiation 28 Second OrderPartialDerivatives Thepartialderivativeofapartialderivativeiscalledasecond orderpartialderivative 29 Young sTheorem Undergeneralconditions theorderinwhichpartialdifferentiationisconductedtoevaluatesecond orderpartialderivativesdoesnotmatter 30 UseofSecond OrderPartials Second orderpartialsplayanimportantroleinmanyeconomictheoriesOneofthemostimportantisavariable sownsecond orderpartial fiishowshowthemarginalinfluenceofxiony y xi changesasthevalueofxiincreasesavalueoffii 0indicatesdiminishingmarginaleffectiveness 31 TotalDifferential Supposethaty f x1 x2 xn Ifallx sarevariedbyasmallamount thetotaleffectonywillbe 32 First OrderConditionforaMaximum orMinimum Anecessaryconditionforamaximum orminimum ofthefunctionf x1 x2 xn isthatdy 0foranycombinationofsmallchangesinthex sTheonlywayforthistobetrueisif Apointwherethisconditionholdsiscalledacriticalpoint 33 FindingaMaximum Supposethatyisafunctionofx1andx2y x1 1 2 x2 2 2 10y x12 2x1 x22 4x2 5First orderconditionsimplythat OR 34 TheEnvelopeTheorem TheenvelopetheoremconcernshowtheoptimalvalueforaparticularfunctionchangeswhenaparameterofthefunctionchangesThisiseasiesttoseebyusinganexample 35 TheEnvelopeTheorem Supposethatyisafunctionofxy x2 axFordifferentvaluesofa thisfunctionrepresentsafamilyofinvertedparabolasIfaisassignedaspecificvalue thenybecomesafunctionofxonlyandthevalueofxthatmaximizesycanbecalculated 36 TheEnvelopeTheorem Supposeweareinterestedinhowy changesasachangesTherearetwowayswecandothiscalculatetheslopeofydirectlyholdxconstantatitsoptimalvalueandcalculate y adirectly 37 TheEnvelopeTheorem Tocalculatetheslopeofthefunction wemustsolvefortheoptimalvalueofxforanyvalueofady dx 2x a 0 x a 2Substituting wegety x 2 a x a 2 2 a a 2 y a2 4 a2 2 a2 4 38 TheEnvelopeTheorem Therefore dy da 2a 4 a 2 x But wecansavetimebyusingtheenvelopetheoremforsmallchangesina dy dacanbecomputedbyholdingxatx andcalculating y adirectlyfromy 39 TheEnvelopeTheorem y a xHoldingx x y a x a 2Thisisthesameresultfoundearlier 40 TheEnvelopeTheorem Theenvelopetheoremstatesthatthechangeintheoptimalvalueofafunctionwithrespecttoaparameterofthatfunctioncanbefoundbypartiallydifferentiatingtheobjectivefunctionwhileholdingx orseveralx s atitsoptimalvalue 41 TheEnvelopeTheorem Theenvelopetheoremcanbeextendedtothecasewhereyisafunctionofseveralvariablesy f x1 xn a Findinganoptimalvalueforywouldconsistofsolvingnfirst orderequations y xi 0 i 1 n 42 TheEnvelopeTheorem Optimalvaluesforthesesx swouldbedeterminedthatareafunctionofax1 x1 a x2 x2 a 43 TheEnvelopeTheorem Substitutingintotheoriginalobjectivefunctionyieldsanexpressionfortheoptimalvalueofy y y f x1 a x2 a xn a a Differentiatingyields 44 TheEnvelopeTheorem Becauseoffirst orderconditions alltermsexcept f aareequaltozeroifthex sareattheiroptimalvaluesTherefore 45 Part2ConstrainedOptimization Veryimportantintheeconomic 46 ConstrainedMaximization Whatifallvaluesforthex sarenotfeasible thevaluesofxmayallhavetobepositiveaconsumer schoicesarelimitedbytheamountofpurchasingpoweravailableOnemethodusedtosolveconstrainedmaximizationproblemsistheLagrangianmultipliermethod 47 LagrangianMultiplierMethod Supposethatwewishtofindthevaluesofx1 x2 xnthatmaximizey f x1 x2 xn subjecttoaconstraintthatpermitsonlycertainvaluesofthex stobeusedg x1 x2 xn 0 48 LagrangianMultiplierMethod TheLagrangianmultipliermethodstartswithsettinguptheexpressionL f x1 x2 xn g x1 x2 xn where isanadditionalvariablecalledaLagrangianmultiplierWhentheconstraintholds L fbecauseg x1 x2 xn 0 49 LagrangianMultiplierMethod First OrderConditions L x1 f1 g1 0 L x2 f2 g2 0 L g x1 x2 xn 0 50 LagrangianMultiplierMethod Thefirst orderconditionscangenerallybesolvedforx1 x2 xnand Thesolutionwillhavetwoproperties thex swillobeytheconstraintthesex swillmakethevalueofL andthereforef aslargeaspossible 51 LagrangianMultiplierMethod TheLagrangianmultiplier hasanimportanteconomicinterpretationThefirst orderconditionsimplythatf1 g1 f2 g2 fn gn thenumeratorsabovemeasurethemarginalbenefitthatonemoreunitofxiwillhaveforthefunctionfthedenominatorsreflecttheaddedburdenontheconstraintofusingmorexi 52 LagrangianMultiplierMethod Attheoptimalchoicesforthex s theratioofthemarginalbenefitofincreasingxitothemarginalcostofincreasingxishouldbethesameforeveryx isthecommoncost benefitratioforallofthex s 53 LagrangianMultiplierMethod Iftheconstraintwasrelaxedslightly itwouldnotmatterwhichxischangedTheLagrangianmultiplierprovidesameasureofhowtherelaxationintheconstraintwillaffectthevalueofy providesa shadowprice totheconstraint 54 LagrangianMultiplierMethod Ahighvalueof indicatesthatycouldbeincreasedsubstantiallybyrelaxingtheconstrainteachxhasahighcost benefitratioAlowvalueof indicatesthatthereisnotmuchtobegainedbyrelaxingtheconstraint 0impliesthattheconstraintisnotbinding 55 Duality Anyconstrainedmaximizationproblemhasassociatedwithitadualprobleminconstrainedminimizationthatfocusesattentionontheconstraintsintheoriginalproblem 56 Duality Individualsmaximizeutilitysubjecttoabudgetconstraintdualproblem individualsminimizetheexpenditureneededtoachieveagivenlevelofutilityFirmsminimizethecostofinputstoproduceagivenlevelofoutputdualproblem firmsmaximizeoutputforagivencostofinputspurchased 57 ConstrainedMaximization Supposeafarmerhadacertainlengthoffence P andwishedtoenclosethelargestpossiblerectangularshapeLetxbethelengthofonesideLetybethelengthoftheothersideProblem choosexandysoastomaximizethearea A x y subjecttotheconstraintthattheperimeterisfixedatP 2x 2y 58 ConstrainedMaximization SettinguptheLagrangianmultiplierL x y P 2x 2y Thefirst orderconditionsforamaximumare L x y 2 0 L y x 2 0 L P 2x 2y 0 59 ConstrainedMaximization Sincey 2 x 2 xmustbeequaltoythefieldshouldbesquarexandyshouldbechosensothattheratioofmarginalbenefitstomarginalcostsshouldbethesameSincex yandy 2 wecanusetheconstrainttoshowthatx y P 4 P 8 60 ConstrainedMaximization InterpretationoftheLagrangianmultiplierifthefarmerwasinterestedinknowinghowmuchmorefieldcouldbefencedbyaddinganextrayardoffence suggeststhathecouldfindoutbydividingthepresentperimeter P by8thus theLagrangianmultiplierprovidesinformationabouttheimplicitvalueoftheconstraint 61 ConstrainedMaximization Dualproblem choosexandytominimizetheamountoffencerequiredtosurroundthefieldminimizeP 2x 2ysubjecttoA x ySettinguptheLagrangian LD 2x 2y D A x y 62 ConstrainedMaximization First orderconditions LD x 2 D y 0 LD y 2 D x 0 LD D A x y 0Solving wegetx y A1 2TheLagrangianmultiplier D 2A 1 2 63 EnvelopeTheorem ConstrainedMaximization Supposethatwewanttomaximizey f x1 xn a subjecttotheconstraintg x1 xn a 0OnewaytosolvewouldbetosetuptheLagrangianexpressionandsolvethefirst orderconditions 64 EnvelopeTheorem ConstrainedMaximization Alternatively itcanbeshownthatdy da L a x1 xn a ThechangeinthemaximalvalueofythatresultswhenachangescanbefoundbypartiallydifferentiatingLandevaluatingthepartialderivativeattheoptimalpoint 65 SecondOrderConditions FunctionsofOneVariable Lety f x Anecessaryconditionforamaximumisthatdy dx f x 0Toensurethatthepointisamaximum ymustbedecreasingformovementsawayfromit 66 SecondOrderConditions FunctionsofOneVariable Thetotaldifferentialmeasuresthechangeinydy f x dxTobeatamaximum dymustbedecreasingforsmallincreasesinxToseethechangesindy wemustusethesecondderivativeofy 67 SecondOrderConditions FunctionsofOneVariable Notethatd2y 0impliesthatf x dx2 0Sincedx2mustbepositive f x 0Thismeansthatthefunctionfmusthaveaconcaveshapeatthecriticalpoint 68 SecondOrderConditions FunctionsofTwoVariables Supposethaty f x1 x2 Firstorderconditionsforamaximumare y x1 f1 0 y x2 f2 0Toensurethatthepointisamaximum ymustdiminishformovementsinanydirectionawayfromthecriticalpoint 69 SecondOrderConditions FunctionsofTwoVariables Theslopeinthex1direction f1 mustbediminishingatthecriticalpointTheslopeinthex2direction f2 mustbediminishingatthecriticalpointBut conditionsmustalsobeplacedonthecross partialderivative f12 f21 toensurethatdyisdecreasingforallmovementsthroughthecriticalpoint 70 SecondOrderConditions FunctionsofTwoVariables Thetotaldifferentialofyisgivenbydy f1dx1 f2dx2Thedifferentialofthatfunctionisd2y f11dx1 f12dx2 dx1 f21dx1 f22dx2 dx2d2y f11dx12 f12dx2dx1 f21dx1dx2 f22dx22ByYoung stheorem f12 f21andd2y f11dx12 2f12dx1dx2 f22dx22 71 SecondOrderConditions FunctionsofTwoVariables d2y f11dx12 2f12dx1dx2 f22dx22Forthisequationtobeunambiguouslynegativeforanychangeinthex s f11andf22mustbenegativeIfdx2 0 thend2y f11dx12ford2y 0 f11 0Ifdx1 0 thend2y f22dx22ford2y 0 f22 0 72 SecondOrderConditions FunctionsofTwoVariables d2y f11dx12 2f12dx1dx2 f22dx22Ifneitherdx1nordx2iszero thend2ywillbeunambiguouslynegativeonlyiff11f22 f122 0thesecondpartialderivatives f11andf22 mustbesufficientlynegativesothattheyoutweighanypossibleperverseeffectsfromthecross partialderivatives f12 f21 73 SecondOrderConditionsfortheConstrainedMaximization f11f22 2f12f1f2 f22f12 0Thisistosayunderlinearconstrainedconditions theobjectfunctionneedstobequasi concavetomakethefirstorderconditionsbethesufficientconditions 74 ConcaveandQuasi ConcaveFunctions Thedifferencesbetweenconcaveandquasi concavefunctionscanbeillustratedwiththefunctiony f x1 x2 x1 x2 kwherethex stakeononlypositivevaluesandkcantakeonavarietyofpositivevalues 75 ConcaveandQuasi ConcaveFunctions Nomatterwhatvaluektakes thisfunctionisquasi concaveWhetherornotthefunctionisconcavedependsonthevalueofkifk0 5 thefunctionisconvex 76 HomogeneousFunctions Afunctionf x1 x2 xn issaidtobehomogeneousofdegreekiff tx1 tx2 txn tkf x1 x2 xn whenafunctionishomogeneousofdegreeone adoublingofallofitsargumentsdoublesthevalueofthefunctionitselfwhenafunctionishomogeneousofdegreezero adoublingofallofitsargumentsleavesthevalueofthefunctionunchanged 77 HomogeneousFunctions Ifafunctionishomogeneousofdegreek thepartialderivativesofthefunctionwillbehomogeneousofdegreek 1 78 Euler sTheorem Ifwedifferentiatethedefinitionforhomogeneitywithrespecttotheproportionalityfactort wegetktk 1f x1 xn x1f1 tx1 txn xnfn tx1 txn ThisrelationshipiscalledEuler stheorem 79 Euler sTheorem Euler stheoremshowsthat forhomogeneousfunctions thereisadefiniterelationshipbetweenthevaluesofthefunctionandthevaluesofitspartialderivatives 80 HomotheticFunctions Ahomotheticfunctionisonethatisformedbytakingamonotonictransformationofahomogeneousfunctiontheydonotpossessthehomogeneitypropertiesoftheirunderlyingfunctions 81 HomotheticFunctions Forbothhomogeneousandhomotheticfunctions theimplicittrade offsamongthevariablesinthefunctiondependonlyontheratiosofthosevariables notontheirabsolutevalues 82 HomotheticFunctions Supposeweareexaminingthesimple twovariableimplicitfunctionf x y 0Theimplicittrade offbetweenxandyforatwo variablefunctionisdy dx fx fyIfweassumefishomogeneousofdegreek itspartialderivativeswillbehomogeneousofdegreek 1 83 HomotheticFunctions Theimplicittrade offbetweenxandyis Ift
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课件池塘水彩
- 叉车自学课件心得
- 临床教师素质培训
- 做房子手工课件
- 中班垃圾分类教案
- 中职会计要素课件
- 课件框架搭建步骤图
- 幼儿手工制作课件
- 项目干系人培训
- 植物拓染布课件
- 多模态大语言模型领域进展分享
- 《改善患者就医体验》课件
- 农机修理工第三届全省职业技能大赛农机修理工项目技术文件
- 下咽癌护理查房详解
- 乳腺癌术后淋巴水肿的护理
- 超龄员工用工免责协议书
- 教科版小学科学一年级上册全册教案【全套】
- 成人肠造口护理
- 人教版英语七年级上册阅读理解专项训练16篇(含答案)
- 高效压缩空气系统供应规范(TCECA-G 0225-2023)
- 安徽省宣城市宣州区宣城市第六中学2024-2025学年九年级上学期开学物理试题
评论
0/150
提交评论