




已阅读5页,还剩31页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 6微积分基本定理 课标要求 1 了解微积分基本定理的内容与含义 2 会利用微积分基本定理求函数的定积分 核心扫描 1 用微积分基本定理求函数的定积分是本课的重点 2 对微积分基本定理的考查常以选择 填空题的形式出现 自学导引1 微积分基本定理 连续 f x F b F a F b F a 想一想 导数与定积分有怎样的联系 提示导数与定积分都是定积分学中两个最基本 最重要的概念 运用它们之间的联系 我们可以找出求定积分的方法 求导数与定积分是互为逆运算 2 定积分和曲边梯形面积的关系设曲边梯形在x轴上方的面积为S上 x轴下方的面积为S下 则 1 当曲边梯形的面积在x轴上方时 如图 1 则图 1 图 2 图 3 S下 S上 S下 0 想一想 在上面图 1 图 2 图 3 中的三个图形阴影部分的面积分别怎样表示 提示根据定积分与曲边梯形的面积的关系知 名师点睛1 微积分基本定理的理解 1 微积分基本定理揭示了导数与定积分之间的联系 同时它也提供了计算定积分的一种有效方法 2 根据定积分的定义求定积分往往比较困难 而利用微积分基本定理求定积分比较方便 3 设f x 是定义在区间I上的一个函数 如果存在函数F x 在区间I上的任意一点x处都有F x f x 那么F x 叫做函数f x 在区间I上的一个原函数 根据定义 求函数f x 的原函数 就是要求一个函数F x 使它的导数F x 等于f x 由于 F x c F x f x 所以F x c也是f x 的原函数 其中c为常数 4 利用微积分基本定理求定积分的关键是找出满足F x f x 的函数F x 通常 我们可以运用基本初等函数的求导公式和导数的四则运算法则从反方向上求出F x 2 被积函数为分段函数或绝对值函数时的正确处理方式分段函数和绝对值函数积分时要分段去积和去掉绝对值符号去积 处理这类积分一定要弄清分段临界点 同时对于定积分的性质 必须熟记在心 题型一求简单函数的定积分 例1 计算下列定积分 思路探索 解答本题可先求被积函数的原函数 然后利用微积分基本定理求解 1 用微积分基本定理求定积分的步骤 求f x 的一个原函数F x 计算F b F a 2 注意事项 有时需先化简 再求积分 f x 的原函数有无穷多个 如F x c 计算时 一般只写一个最简单的 不再加任意常数c 变式1 求下列定积分 求较复杂函数的定积分的方法 1 掌握基本初等函数的导数以及导数的运算法则 正确求解被积函数的原函数 当原函数不易求时 可将被积函数适当变形后求解 具体方法是能化简的化简 不能化简的变为幂函数 正 余函数 指数 对数函数与常数的和与差 2 精确定位积分区间 分清积分下限与积分上限 定积分的应用体现了积分与函数的内在联系 可以通过积分构造新的函数 进而对这一函数进行性质 最值等方面的考查 解题过程中注意体会转化思想的应用 题后反思 1 求分段函数的定积分时 可利用积分性质将其表示为几段积分和的形式 2 带绝对值的解析式 先根据绝对值的意义找到分界点 去掉绝对值号 化为分段函数 3 含有字母参数的绝对值问题要注意分类讨论 求f x 在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 市政工程实践运用试题及答案
- 小学数学教学由“1”到多 由多返“1”
- 合作经济与可持续发展试题及答案
- 艺术创作与批评技能测试卷
- 工程经济的创新思维探讨试题及答案
- 网络教育在线教育平台与课程资源开发
- 心理学社会认知专题知识梳理
- 村民合作参与农田养殖项目协议书
- 化学工程与工艺实践应用题
- 干货满满的中级经济师试题和答案
- 骨质疏松用药治疗
- 2024信息安全意识培训课件完整版含内容
- 《炎症与冠心病》课件
- 2024国家电网公司(第二批)招聘国家电网公司华北分部管理单位遴选500模拟题附带答案详解
- 《汽车灯具的标准》课件
- 一例糖尿病酮中毒个案护理
- GB/T 18601-2024天然花岗石建筑板材
- 第6课 全球航路的开辟 说课稿 -2023-2024学年高一下学期统编版(2019)必修中外历史纲要下册
- 融资融券业务流程详解
- (新版)抄表核算收费员(高级工)技能等级认定考试题库(含答案)
- 2024年高考真题-生物(黑吉辽卷) 含解析
评论
0/150
提交评论