开关电源实验报告.doc_第1页
开关电源实验报告.doc_第2页
开关电源实验报告.doc_第3页
开关电源实验报告.doc_第4页
开关电源实验报告.doc_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

开关电源实验报告一 开关电源原理如下图30W开关电源电路图所示,市电先经过由电容CX1和滤波电感LF1A组成的滤波电路后,再经过型号为KBP210的整流桥BD1和C1组成的整流电路,输出直流电。直流电又经过由UC3842和2N60等元器件组成的高频逆变电路后,变成高频的交流电,经高频变压器输出为低电压的高频交流电。高频交流经肖基特二极管SR1060后变为脉动的直流电,最后经滤波电容和滤波电感变为我们想要的直流电输出。1.1 AC输入整流滤波电路原理: (1)防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。(2)输入滤波电路:C1、L1、C2、C3组成的双型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。(3)整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。1.2功率变换电路 (1)MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。(2)常见的原理图:(3)工作原理R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断 。R1和Q1中的结电容CGS、CGD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量也就越多;当Q1截止时,变压器通过D1、D2、R5、R4、C3释放能量,同时也达到了磁场复位的目的,为变压器的下一次存储、传递能量做好了准备。IC根据输出电压和电流时刻调整着脚锯形波占空比的大小,从而稳定了整机的输出电流和电压。C4和R6为尖峰电压吸收回路。1.3输出整流滤波电路:反激式整流电路: T1为开关变压器,其初极和次极的相位相反。D1为整流二极管,R1、C1为削尖峰电路。L1为续流电感,R2为假负载,C4、L2、C5组成型滤波器。1.4稳压环路:(1)反馈电路原理图: (2)工作原理:当输出U0升高,经取样电阻R7、R8、R10、VR1分压后,U1脚电压升高,当其超过U1脚基准电压后U1脚输出高电平,使Q1导通,光耦OT1发光二极管发光,光电三极管导通,UC3842脚电位相应变低,从而改变U1脚输出占空比减小,U0降低。当输出U0降低时,U1脚电压降低,当其低过U1脚基准电压后U1脚输出低电平,Q1不导通,光耦OT1发光二极管不发光,光电三极管不导通,UC3842脚电位升高,从而改变U1脚输出占空比增大,U0降低。周而复始,从而使输出电压保持稳定。调节VR1可改变输出电压值。反馈环路是影响开关电源稳定性的重要电路。如反馈电阻电容错、漏、虚焊等,会产生自激振荡,故障现象为:波形异常,空、满载振荡,输出电压不稳定等。1.5短路保护电路常见的限流、短路保护电路。其工作原理简述如下: 当输出电路短路或过流,变压器原边电流增大,R3两端电压降增大,脚电压升高,UC3842脚输出占空比逐渐增大,脚电压超过1V时,UC3842关闭无输出。1.6输出端限流保护下图是常见的输出端限流保护电路,工作原理:当输出电流过大时,RS(锰铜丝)两端电压上升,U1脚电压高于脚基准电压,U1脚输出高电压,Q1导通,光耦发生光电效应,UC3842脚电压降低,输出电压降低,从而达到输出过载限流的目的。1.7输出过压保护电路的原理:输出过压保护电路的作用是:当输出电压超过设计值时,把输出电压限定在一安全值的范围内。当开关电源内部稳压环路出现故障或者由于用户操作不当引起输出过压现象时,过压保护电路进行保护以防止损坏后级用电设备。应用最为普遍的过压保护电路有如下几种:(1)可控硅触发保护电路:如左图,当Uo1输出升高,稳压管(Z3)击穿导通,可控硅(SCR1)的控制端得到触发电压,因此可控硅导通。Uo2电压对地短路,过流保护电路或短路保护电路就会工作,停止整个电源电路的工作。当输出过压现象排除,可控硅的控制端触发电压通过R对地泄放,可控硅恢复断开状态。(2)光电耦合保护电路:如右图,当Uo有过压现象时,稳压管击穿导通,经光耦(OT2)R6到地产生电流流过,光电耦合器的发光二极管发光,从而使光电耦合器的光敏三极管导通。Q1基极得电导通,3842的脚电降低,使IC关闭,停止整个电源的工作,Uo为零,周而复始。(3)输出限压保护电路:输出限压保护电路如下图,当输出电压升高,稳压管导通光耦导通,Q1基极有驱动电压而道通,UC3842电压升高,输出降低,稳压管不导通,UC3842电压降低,输出电压升高。周而复始,输出电压将稳定在一范围内(取决于稳压管的稳压值)。(4)输出过压锁死电路: 图A的工作原理是,当输出电压Uo升高,稳压管导通,光耦导通,Q2基极得电导通,由于Q2的导通Q1基极电压降低也导通,Vcc电压经R1、Q1、R2使Q2始终导通,UC3842脚始终是高电平而停止工作。在图B中,UO升高U1脚电压升高,脚输出高电平,由于D1、R1的存在,U1脚始终输出高电平Q1始终导通,UC3842脚始终是低电平而停止工作。二 重要元器件原理分析2.1 UC3842UC3842 是美国 Unitrode 公司生产的一种高性能单端输出式电流控制型脉宽调制器芯片。 UC3842 为 8 脚双列直插式封装 , 其内部原理框图如下图(UC3842 内部结构图)所示。主要由 5. 0V 基准电压源、用来精确地控制占空比调定的振荡器、降压器、电流测定比较器、 PWM 锁存器、高增益 E /A 误差放大器和适用于驱动功率 MOSFET 的大电流推挽输出电路等构成。端 1 为 COMP 端 ; 端 2 为反馈端 ; 端 3 为电流测定端 ; 端 4 接 Rt 、 Ct 确定锯齿波频率 ; 端 5 接地 ; 端 6 为推挽输出端 , 有拉、灌电流的能力 ; 端 7 为集成块工作电源电压端 , 可以工作在 8 40V; 端 8 为内部供外用的基准电压 5V, 带载能力 50mA 。电路结构与工作原理 :图 2 (开关电源原理图)所示为笔者在实际工作中使用的电路图。输入电压为 24V 直流电。三路直流输出 , 分别为 + 5V /4A, + 12V /0. 3A 和 - 12V /0. 3A 。所有的二极管都采用快速反应二极管 , 核心 PWM 器件采用 UC3842 。开关管采用快速大功率场效应管。引脚功能介绍:UC3842 采用固定工作频率脉冲宽度可控调制方式,共有8 个引脚,各脚功能如下:脚是误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和频率特性;脚是反馈电压输入端,此脚电压与误差放大器同相端的2.5V 基准电压进行比较,产生误差电压,从而控制脉冲宽度;脚为电流检测输入端, 当检测电压超过1V时缩小脉冲宽度使电源处于间歇工作状态;脚为定时端,内部振荡器的工作频率由外接的阻容时间常数决定,f=1.8/(RTCT);脚为公共地端;脚为推挽输出端,内部为图腾柱式,上升、下降时间仅为50ns 驱动能力为1A ;脚是直流电源供电端,具有欠、过压锁定功能,芯片功耗为15mW;脚为5V 基准电压输出端,有50mA 的负载能力。启动过程:首先由电源通过启动电阻 R1 提供电流给电容 C2 充电 , 当 C2 电压达到 UC3842 的启动电压门槛值 16V 时 ,UC3842 开始工作并提供驱动脉冲 , 由 6 端输出推动开关管工作 , 输出信号为高低电压脉冲。高电压脉冲期间 , 场效应管导通 , 电流通过变压 器原边 , 同时把能量储存在变压器中。根据同名端标识情况 , 此时变压器各路副边没有能量输出。当 6 脚输出的高电平脉冲结束时 , 场效应管截止 , 根据楞次定律 , 变压器原边为维持电流不变 , 产生下正上负的感生电动势 , 此时副边各路二极管导通 , 向外提供能量。同时反馈线圈向UC3842供电。UC3842内部设有欠压锁定电路 , 其开启和关闭阈值分别为 16V 和 10V。在开启之前 ,UC3842 消耗的电流在 1mA 以内。电源电压接通之后 , 当 7 端电压升至 16V 时 UC3842 开始工作 , 启动正常工作后 , 它的消耗电流约为 15mA 。因为 UC3842 的启动电流在 1mA 以内 , 设计时参照这些参数选取 R1 , 所以在 R1 上的功耗很小。2.2可调式精密并联稳压器TL431电子爱好者社区y K3_6v$J,TTL431是由美国德州仪器(TI)和摩托罗拉公司生产的2.536V可调式精密并联稳压器。其性能优良,价格低廉,该器件的典型动态阻抗为0.2,可广泛用于单片精密开关电源或精密线性稳压电源中,在很多应用中可以用它代替齐纳二极管。此外,TL431还能构成电压比较器、电源电压监视器、延时电路、精密恒流源等。TL431大多采用DIP-8或TO-92封装形式,引脚排列分别如图1所示。3 个引脚分别为:阴极(CATHODE)、阳极(ANODE)和参考端(REF)。图中,A为阳极,使用时需接地;K为阴极,需经限流电阻接正电源;UREF是输出电压UO的设定端,外接电阻分压器;NC为空脚。 由TL431的等效电路图可以看到,Uref是一个内部的2.5V 基准源,接在运放的反相输入端。由运放的特性可知,只有当REF 端(同相端)的电压非常接近Uref(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF 端电压的微小变化,通过三极管VT的电流将从1 到100mA 变化。当然,该图绝不是TL431 的实际内部结构,所以不能简单地用这种组合来代替它。前面提到TL431 的内部含有一个2.5V 的基准电压,所以当在REF 端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。如图2 所示的电路,当R1 和R2 的阻值确定时,两者对Vo 的分压引入反馈,若Vo 增大,反馈量增大,TL431 的分流也就增加,从而又导致Vo 下降。显见,这个深度的负反馈电路必然在Uref等于基准电压处稳定,此时Vo=(1+R1/R2)Vref。选择不同的R1 和R2 的值可以得到从2.5V 到36V 范围内的任意电压输出,特别地,当R1=R2 时,Vo=5V。需要注意的是,在选择电阻时必须保证TL431 工作的必要条件,就是通过阴极的电流要大于1 mA 。2.3 通用光电耦合器PC817电子爱好者社区o c b;q;Veyx p特点:1. 电流传输比 CTR:IF=5mA,VCE=5V时最小值为 50%2. 输入和输出之间的隔绝电压高Viso(rms):5.0 KV普通光电耦合器只能传输数字信号(开关信号),不适合传输模拟信号。线性光电耦合器是一种新型的光电隔离器件,能够传输连续变化的模拟电压或电流信号,这样随着输入信号的强弱变化会产生相应的光信号,从而使光敏晶体管的导通程度也不同,输出的电压或电流也随之不同。PC817光电耦合器不但可以起到反馈作用还可以起到隔离作用。其内部框图如图所示。三 焊接过程分析 焊接是制造电子产品的重要环节之一,如果没有相应的工艺质量保证,任何一个设计精良的电子产品都难以达到设计要求。在科研开发、设计试制、技术革新的过程中制作一、两块电路板,不可能也没有必要采用自动设备,经常需要进行手工装焊,在现代化的大规模电子产品生产中发挥了重要的作用,有利于保证工艺条件和装焊操作的一致性,提高产品质量。在焊接的过程中,我明白了焊接的要领:焊锡借助于助焊剂的作用,经过加热熔化成液态,进入被焊金属的缝隙,在焊接物的表面,形成金属合金使两种金属体牢固地连接在一起,形成的金属合金就是焊锡中锡铅的原子进入被焊金属的晶格中生成的,因两种金属原子的壳层相互扩散,依靠原子间的内聚力使两种金属永久地牢固结合在一起。3.1 焊接方法用电烙铁与焊锡丝将加工好的弯钩焊接在新的电路板上:a左手拿焊锡丝,右手拿电烙铁。b把电烙铁以45度左右夹角与焊盘接触,加热焊盘。c待焊盘达到温度时,同样从与焊板成45度左右夹角方向送焊锡丝。d待焊锡丝熔化一定量时,迅速撤离焊锡丝。e最后撤离电烙铁,撤离时沿铜丝竖直向上或沿与电路板的夹角45度角方向。在焊接的过程中,我们应该注意:焊接的时间不能太久,大概心里默数1、2即可,然后再撤离焊锡丝,再撤离电烙铁,在撤离电烙铁时,也一样心里默数1、2即可;焊锡要适量,少了可能导致焊点虚焊。在焊的过程中,出现虚焊或则焊接不好,要把焊锡焊掉,重新再焊。在吧焊锡焊掉的过程中,左手拿这吸锡器,右手拿着电烙铁,先把电烙铁以45度左右夹角与焊盘接触,加热焊锡,再将吸锡器靠近焊锡,按下吸锡器的按钮,就可以吧焊锡焊掉,重复多次,就可清除焊盘上的焊锡,注意不要将焊盘加热太久,以免把焊盘的铜片焊掉。3.2 元器件的识别在进行焊接工作之前首先要认识各元器件,了解如何判断电阻阻值及某些元件的极性。1. 色环电阻及其参数识别五环电阻的读法:前3位数字是有效数字,第四位是倍率,第五位是误差等级。色环颜色代表的数字:黑0 、棕1、红2、橙3、黄4、绿5、蓝6、紫7、灰8、白9色环颜色代表的倍率:黑*1、棕*10、红*100、橙*1K、黄*10K、绿*100K、蓝*1M、紫*10M、灰*100M、白*1000M、金*0.1、银*0.01色环颜色代表的误差等级:金5%、银10%、棕1%、红2%、绿0.5%、蓝0.25%、紫0.1%、灰0.05%、无色20%。色环电阻阻值速测软件。万用表直接测量。2. 二极管、发光二极管二极管的主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大。识别方法:二极管的识别很简单,小功率二极管的N极(负极),在二极管外表大多采用一种色圈标出来,有些二极管也用二极管专用符号来表示P极(正极)或N极(负极),也有采用符号标志为“P”、“N”来确定二极管极性的。发光二极管的正负极可从引脚长短来识别,长脚为正,短脚为负。测试注意事项:用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好相反。3. 三极管塑料封装三极管三极识别:PNP,NPN三极:基极(B),集电极(C),发射机(E)面对三极管平面,从左到右,依次为E,B,C。4. 电容电解电容:可从引脚长短来识别,长脚为正,短脚为负,使用电解电容的时候,还要注意正负极不要接反。无极性电容电容标称值:电解电容一般容值较大,表示为xUF/yV,其中x为电容容值,y为电容耐压;通常在容量小于10000pF的时候,用pF做单位,而且用简标,如:1000PF标为102、10000PF标为103,当大于10000pF的时候,用uF做单位。为了简便起见,大于100pF而小于1uF的电容常常不注单位。没有小数点的,它的单位是pF,有小数点的,它的单位是uF。3.3 焊接结合2.1所述焊接方法及2.2对元器件的识别,完成各器件的焊接。焊接顺序以先焊接好的元件不影响后面元件的焊接为原则,一般先焊接体积较小较低的电阻电容等器件,后焊接体积较大较高的元件,接插件最后焊接。即从小到大、从高到低的原则。3.4 检查焊接完成后需进行目检,即查看器件的正确焊接情况。主要有:观察各焊接点是否有虚焊、漏焊、连焊等现象;观察电解电容、二极管、稳压管、功率管、整流桥、UC3842等是否焊反。在通电检查以前如果不经过严格的外观检查,通电检查不仅困难较多,而且可能损坏设备仪器,造成安全事故。如电源连接线虚焊,那么通电时就会发现设备加不上电,当然无法进行调试;又如电解电容焊反,那么通电后该电容会被击穿,导致无法正常作用。外观检查可以发现许多微小的缺陷,例如用目测观察不到的电路桥接,但对于内部虚焊的隐患就不容易觉察。所以根本的问题还是要提高焊接操作的技艺水平,不能把焊接问题留给检验工序去完成。四 上电调试在焊接工作完成并确认无误后,在接线端子1号和2号点接入220V交流电压,3号点接地,这时发光二极管导通发光,证明电流进入开关电源,使用万用表检测4号和5号接点,输出直流电压在12V左右,再通过对电位器的调整,将该输出电压稳定在12V。即可证明该开关电源焊接基本正确,工作基本稳定。然后测量三个监测点波形情况:波形分析:图1为Power MOSFET的g管脚,由UC3842的6脚输出经过电阻R13后的波形图。由图所示,波形刚开始的时候有个向上的尖峰,然后慢慢的下降趋向平缓,其目的是为了更快的使Q1导通。图2为Power MOSFET

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论