投入产出模型_第1页
投入产出模型_第2页
投入产出模型_第3页
投入产出模型_第4页
投入产出模型_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

6.1投入产出模型投入产出模型对于研究分析国民经济各部门之间的数量依存关系,制定国民经济的计划与规划等都具有十分重要的作用。根据投入产出模型的原理与方法,现介绍其建模与应用分析的具体方法步骤。第1节 投入产出模型概述 投入产出分析是20世纪30年代由美国经济学家瓦。列昂节夫(W. Leontif)首先提出的,它是研究整个经济系统各部门之间“投入”与“产出”关系的线性模型,一般称为投入产出模型。国民经济各个部门之间存在着相互依存的关系,每个部门在运转中将其它部门的成品或半成品经过加工(称为投入)变为自己的产品(称为产出),如何根据各部门之间的投入-产出关系,确定各部门的产出水平,以满足社会的需求,是投入产出综合平衡模型研究的问题。投入产出表 投入平衡表简称投入产出表,它是指能够把国民经济各部门之间所有产品的投入与产出关系都表现出来的统计表格。它是建立投入模型的基础。主要根据所研究的目的和要求来确定投入产出表的类型。现以价值型投入产出表为例,如列昂节夫的第一个投入产出表是研究全美国的经济结构的,他编制了全美国十大部门价值型投入产出表。如表1是一张简化的中国2002年投入产出表,表中国民经济由农业、工业、建筑业、运输邮电业、批零餐饮业和其它服务业6个部门构成,对每个部门有初始投入和总投入,以及外部需求和总产出。表1中国2002年投入产出表(产值单位:亿元)产出投入农业工业建筑业运输邮电批零餐饮其他服务外部需求总产出农业464788229131271312842918工业499860514444035571223408316814建筑业593202312426912875运输邮电62527128163671464771570批零餐饮79749140431302739272341其他服务146128527222521954227255414初始投入1663485165970312183093总投入2918168142875157023415414 表中数字均以产值计算,6个部门的横行表示该部门的产品供给各部门生产使用的数量,6个部门的纵列表示该部门生产中消耗的各部门产品的数量。直接消耗系数 直接消耗系数是投入产出应用分析研究最重要的指标。可在投入产出表的基础上求算直接消耗系数,它可显示出各个部门在生产中的技术经济联系。如表1中运输邮电部门消耗403亿元工业部门的产品,总产出为1570亿元,于是运输邮电部门的单位产出对工业部门的直接消耗是403/1570=0.257,如此得到的直接小号系数如表2.由于每个部门的总产出等于总投入,计算式将每行数字相应地除以最后一行数字即可。表2 中国2002年直接消耗系数表 产出投入农业工业建筑业运输邮电批零餐饮其他服务农业0.1590.0470.0800.0080.0540.002工业0.1710.5120.5020.2570.2380.226建筑业0.0020.0010.0010.0130.0100.023运输邮电0.0210.0310.0450.1040.0290.027批零餐饮0.0270.0450.0490.0270.0560.050其他服务0.0500.0760.0950.1430.0940.100投入产出数学模型所谓投入产出数学模型就是指用数学方法来表示投入产出表中所反映的经济部门内在联系的数学模型,具体用数学方程组来表示。现介绍如何将投入产出表转化为实用的数学模型。 从表的行来看,每一个生产部门分配给各个部门再生产性产品加上该部门的最终需求产品,就等于该部门的总产品,于是可得产出平衡方程组: 从表中按行可得其产出平衡方程组的一般形式为: 可简写为: 即得数据形式为: 投入产出平衡方程组 即消耗平衡方程组从表的列来看,每一个生产部门来说,各个部门为其投入的产品加上该部门的新创造的价值,就等于该部门的总投入量价值,于是可得投入平衡方程组: 可简写为: 从表中按列可得其投入平衡方程组的一般形式为: 即得数据形式为: 直接消耗系数平衡方程组1、直接消耗系数 1)概念 直接消耗系数是指第J部门每生产单位产品所消耗第I部门产品的单位消耗量,称第J部门对第I部门的直接消耗系数。它表示生产因素和产品之间的生产技术比例,故又称技术系数。 2)求算 直接消耗系数可从“投入产出表”中直接求出,即: 于是: 其中, 表示J部门实际投入I部门产品的数量,即位于投入产出表中第I行第J列的数字。 表示第J部门的总投入量,即投入产出表中第J列最后一个数字。由此可求算出表 中各个部门的直接消耗系数,如表 所示。 2、直接消耗系数平衡方程组将 代入产出平衡方程组,可得直接消耗系数平衡方程组: 可简写为: 设 A为直接消耗系数矩阵,X为总投入列矩阵,Y为最终需求矩阵,它们分别为: 则可得矩阵形式: 或 这就是最常用的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论