




已阅读5页,还剩23页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
7 2二元一次方程组的解法第2课时 1 熟练地掌握用加减法解二元一次方程组 重点 2 进一步理解加减消元法的基本思想所体现的 化未知为已知的 化归思想方法 难点 一 加减消元法通过将两个方程 或 消去一个未知数 将方程组转化为 来解 简称 相加 相减 一元一次方程 加减法 二 加减法解方程组 思考 解 得 解这个方程得x 把x 代入 得y 所以这个方程组的解是 等式的基本性质 等式两边都加上相等的式子 等式 10 x 10 仍成立 1 1 2 1 2 总结 1 当方程组中的某一个未知数的系数互为相反数时 可以把两个方程相 消去这个未知数 当方程组中的某一个未知数的系数相等时 可以把两个方程相 消去这个未知数 2 代入法和加减法是二元一次方程组的两种解法 它们都是通过 使方程组转化为 加 减 消元 一元一次方程 打 或 判断解方程组的步骤的正误 1 由 得x 3 2y 代入 得3 3 2y 2y 5 2 由 得4x 8 3 由 得2x 2 4 由 3 得4y 4 知识点1用加减法解二元一次方程组 例1 解方程组 思路点拨 方程组中的两个未知数的系数都不成整数倍 所以可以选择一个未知数 将两个方程中该未知数的系数化为相同或互为相反数后 再进行加减 进而解方程组 自主解答 3 得6x 9y 36 2得6x 8y 34 得y 2 把y 2代入 得2x 6 12 解得x 3 所以原方程组的解为 总结提升 加减消元法解二元一次方程组的五步法1 变形 将原方程组变形为某一个未知数的系数绝对值相等的形式 2 加减 将变形后的两个方程相加 或相减 消去一个未知数 得到一个一元一次方程 3 求解 解这个一元一次方程 求出一个未知数的值 4 回代 把求得的未知数的值代入原方程中比较简单的一个方程中 求出另一个未知数的值 5 结果 将两个未知数的值用 合写在一起即可 知识点2选择适当方法解二元一次方程组 例2 解方程组 思路点拨 思路一 观察未知数x的系数 由第一个方程中的x的系数为1 可选择代入消元法 消去x 思路二 观察未知数y的系数 由两个方程中y的系数互为相反数 可选择加减消元法 消去y 自主解答 方法一 由 得x 8 3y 将 代入 得5 8 3y 3y 4 解得y 2 将y 2代入 得x 2 所以 方法二 加减消元法 得 6x 12 解得x 2 将x 2代入 得y 2 所以 互动探究 你还能用别的代入法解此方程吗 提示 由 得3y 5x 4 将 代入 得x 5x 4 8 解得x 2 将x 2代入 得y 2 所以 总结提升 二元一次方程组解法的选择1 选择代入法 当方程组中某一个方程未知数的系数为1 1或常数项为0时 选择用代入消元法简单 2 选择加减法 当方程组中某个未知数系数的绝对值相等或成倍数关系时 选择加减消元法简单 题组一 用加减法解二元一次方程组1 方程组 由 得 A 3x 10B x 5C 3x 5D x 5 解析 选B 得 2x y x y 10 5 化简得x 5 2 二元一次方程组的解是 解析 选B 得4x 8 即x 2 把x 2代入 得y 4 所以 3 2013 凉山州中考 已知方程组则x y的值为 A 1B 0C 2D 3 解析 选D 2得 2x 4y 10 得 3y 6 解得y 2 把y 2代入 得 2x 2 4 解得x 1 所以方程组的解是所以x y 1 2 3 变式训练 若方程组为则x y 解析 由 得x y 1 答案 1 4 2013 泉州中考 方程组的解是 解析 对于方程组 得2x 4 x 2 得2y 2 y 1 所以原方程组的解为答案 5 用加减法解方程组 解析 1 得 6x 3 所以x 把x 代入 得 2 y 2 得y 1 所以方程组的解为 2 2 得 7x 14 x 2 把x 2代入 得y 2 所以方程组的解为 题组二 选择适当方法解二元一次方程组1 如果方程组的解也是方程4x y 2a 0的解 那么a的值是 A B C 2D 2 解析 选B 方程组 得6x 8 所以x 代入 得y 1 所以方程组的解为将其代入方程4x y 2a 0得 4 1 2a 0 解得 a 2 方程组的解为 解析 选D 代入消元法 由 得x y 1代入 得y 2 x 3 原方程组的解为加减消元法 得2x 6 x 3 得2y 4 y 2 原方程组的解为 变式训练 方程组用 加减法 解较为简便的是 A B C D 解析 选C 由题可知只有 中y系数为相反数 中x系数相等 故 用 加减法 解较为简便 3 2013 漳州中考 方程组的解为 解析 方程 得3x 9 x 3 代入 得3 y 3 解得y 0 故方程组的解为答案 4 方程组的解是 解析 由方程组 2 得7x 14 0 解得x 2 把x 2代入 得2 y 5 0 所以y 3 所以原方程组的解为答案 5 解方程组 1 2 2013 黄冈中考 解析 1 得4x 20 解得x 5 将x 5代入 得5 y 8 解得y 3 所以 2 原方程组整理得 由 得 x 5y 3 将 代入 得25y 15 11y 1 14
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年学历类自考传播学概论-中国现代文学史参考题库含答案解析(5卷)
- 2025年学历类自考企业管理概论-学前教育学参考题库含答案解析(5卷)
- 2025年学历类自考企业文化-学前教育原理参考题库含答案解析(5卷)
- 2025年学历类自考中国现代文学史-美学参考题库含答案解析(5卷)
- 2025年学历类自考中国现代文学作品选-外国文学作品选参考题库含答案解析(5卷)
- 2025年学历类自考中国法制史-中国古代文学史(一)参考题库含答案解析(5卷)
- 购买汽油合同(标准版)
- 2025年学历类自考中国古代文学史(二)-企业经营战略概论参考题库含答案解析(5卷)
- 2025年学历类自考中国古代文学史(一)-学前儿童语言教育参考题库含答案解析(5卷)
- 2025年学历类自考中国古代文学史(一)-中国古代文学作品选(二)参考题库含答案解析(5卷)
- 校本课程篆刻教学设计
- GB/T 20967-2007无损检测目视检测总则
- GB/T 12220-2015工业阀门标志
- 当代世界经济与政治第二章课件
- PS考试试题及答案
- 新都区文化产业发展建议报告
- 时代邻里4度°服务美学品质关怀体系
- 养老机构行政值班查房记录表格
- EPC合同条件(银皮书)-1999
- 外研版五年级上册英语(全册)单元教材分析
- 华为-计划、预算和核算
评论
0/150
提交评论