文献翻译——以太网网络电话传送调度:方法论和案例分析_第1页
文献翻译——以太网网络电话传送调度:方法论和案例分析_第2页
文献翻译——以太网网络电话传送调度:方法论和案例分析_第3页
文献翻译——以太网网络电话传送调度:方法论和案例分析_第4页
文献翻译——以太网网络电话传送调度:方法论和案例分析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

11外文文献资料OnthedeploymentofVoIPinEthernetnetworks:methodologyandcasestudyKhaledSalah,DepartmentofInformationandComputerScience,KingFahdUniversityofPetroleumandMinerals,P.O.Box5066,Dhahran31261,SaudiArabiaReceived25May2004;revised3June2005;accepted3June2005.Availableonline1July2005.AbstractDeployingIPtelephonyorvoiceoverIP(VoIP)isamajorandchallengingtaskfordatanetworkresearchersanddesigners.Thispaperoutlinesguidelinesandastep-by-stepmethodologyonhowVoIPcanbedeployedsuccessfully.Themethodologycanbeusedtoassessthesupportandreadinessofanexistingnetwork.PriortothepurchaseanddeploymentofVoIPequipment,themethodologypredictsthenumberofVoIPcallsthatcanbesustainedbyanexistingnetworkwhilesatisfyingQoSrequirementsofallnetworkservicesandleavingadequatecapacityforfuturegrowth.Asacasestudy,weapplythemethodologystepsonatypicalnetworkofasmallenterprise.Weutilizebothanalysisandsimulationtoinvestigatethroughputanddelaybounds.Ouranalysisisbasedonqueuingtheory,andOPNETisusedforsimulation.Resultsobtainedfromanalysisandsimulationareinlineandgiveaclosematch.Inaddition,thepaperdiscussesmanydesignandengineeringissues.TheseissuesincludecharacteristicsofVoIPtrafficandQoSrequirements,VoIPflowandcalldistribution,2definingfuturegrowthcapacity,andmeasurementandimpactofbackgroundtraffic.Keywords:NetworkDesign,NetworkManagement,VoIP,PerformanceEvaluation,Analysis,Simulation,OPNET1IntroductionThesedaysamassivedeploymentofVoIPistakingplaceoverdatanetworks.MostofthesenetworksareEthernetbasedandrunningIPprotocol.Manynetworkmanagersarefindingitveryattractiveandcosteffectivetomergeandunifyvoiceanddatanetworksintoone.Itiseasiertorun,manage,andmaintain.However,onehastokeepinmindthatIPnetworksarebest-effortnetworksthatweredesignedfornon-realtimeapplications.Ontheotherhand,VoIPrequirestimelypacketdeliverywithlowlatency,jitter,packetloss,andsufficientbandwidth.Toachievethisgoal,anefficientdeploymentofVoIPmustensurethesereal-timetrafficrequirementscanbeguaranteedoverneworexistingIPnetworks.WhendeployinganewnetworkservicesuchasVoIPoverexistingnetwork,manynetworkarchitects,managers,planners,designers,andengineersarefacedwithcommonstrategic,andsometimeschallenging,questions.WhataretheQoSrequirementsforVoIP?HowwillthenewVoIPloadimpacttheQoSforcurrentlyrunningnetworkservicesandapplications?WillmyexistingnetworksupportVoIPandsatisfythestandardizedQoSrequirements?Ifso,howmanyVoIPcallscanthenetworksupportbeforeupgradingprematurelyanypartoftheexistingnetworkhardware?Thesechallengingquestionshaveledtothedevelopmentofsomecommercialtoolsfortestingtheperformanceofmultimediaapplicationsindatanetworks.AlistoftheavailablecommercialtoolsthatsupportVoIPislistedin1,2.Forthemostpart,thesetoolsusetwocommonapproachesinassessingthedeploymentofVoIPintotheexistingnetwork.OneapproachisbasedonfirstperformingnetworkmeasurementsandthenpredictingthenetworkreadinessforsupportingVoIP.Thepredictionofthenetworkreadinessisbasedonassessingthehealthofnetworkelements.ThesecondapproachisbasedoninjectingrealVoIPtrafficintoexistingnetworkandmeasuringtheresultingdelay,jitter,andloss.Otherthanthecostassociatedwiththecommercialtools,noneofthecommercialtoolsofferacomprehensiveapproachforsuccessfulVoIPdeployment.Inparticular,nonegives3anypredictionforthetotalnumberofcallsthatcanbesupportedbythenetworktakingintoaccountimportantdesignandengineeringfactors.ThesefactorsincludeVoIPflowandcalldistribution,futuregrowthcapacity,performancethresholds,impactofVoIPonexistingnetworkservicesandapplications,andimpactbackgroundtrafficonVoIP.ThispaperattemptstoaddressthoseimportantfactorsandlayoutacomprehensivemethodologyforasuccessfuldeploymentofanymultimediaapplicationsuchasVoIPandvideoconferencing.However,thepaperfocusesonVoIPasthenewserviceofinteresttobedeployed.Thepaperalsocontainsmanyusefulengineeringanddesignguidelines,anddiscussesmanypracticalissuespertainingtothedeploymentofVoIP.TheseissuesincludecharacteristicsofVoIPtrafficandQoSrequirements,VoIPflowandcalldistribution,definingfuturegrowthcapacity,andmeasurementandimpactofbackgroundtraffic.Asacasestudy,weillustratehowourapproachandguidelinescanbeappliedtoatypicalnetworkofasmallenterprise.Therestofthepaperisorganizedasfollows.Section2presentsatypicalnetworktopologyofasmallenterprisetobeusedasacasestudyfordeployingVoIP.Section3outlinespracticaleight-stepmethodologytodeploysuccessfullyVoIPindatanetworks.Eachstepisdescribedinconsiderabledetail.Section4describesimportantdesignandengineeringdecisionstobemadebasedontheanalyticandsimulationstudies.Section5concludesthestudyandidentifiesfuturework.42ExistingnetworkFig.1illustratesatypicalnetworktopologyforasmallenterpriseresidinginahigh-risebuilding.Thenetworkshownisrealisticandusedasacasestudyonly;however,ourworkpresentedinthispapercanbeadoptedeasilyforlargerandgeneralnetworksbyfollowingthesameprinciples,guidelines,andconceptslaidoutinthispaper.ThenetworkisEthernet-basedandhastwoLayer-2Ethernetswitchesconnectedbyarouter.TherouterisCisco2621,andtheswitchesare3ComSuperstack3300.Switch1connectsFloors1and2andtwoservers;whileSwitch2connectsFloor3andfourservers.EachfloorLANisbasicallyasharedEthernetconnectingemployeePCswithworkgroupandprinterservers.ThenetworkmakesuseofVLANsinordertoisolatebroadcastandmulticasttraffic.AtotaloffiveLANsexist.AllVLANsareportbased.Switch1isconfiguredsuchthatithasthreeVLANs.VLAN1includesthedatabaseandfileservers.VLAN2includesFloor1.VLAN3includesFloor2.Ontheotherhand,Switch2isconfiguredtohavetwoVLANs.VLAN4includestheserversforE-mail,HTTP,Webandcacheproxy,andfirewall.VLAN5includesFloor3.AllthelinksareswitchedEthernet100MbpsfullduplexexceptforthelinksforFloors13whicharesharedEthernet100Mbpshalfduplex.53Step-by-stepmethodologyFig.2showsaflowchartofamethodologyofeightstepsforasuccessfulVoIPdeployment.Thefirstfourstepsareindependentandcanbeperformedinparallel.Beforeembarkingontheanalysisandsimulationstudy,inSteps6and7,Step5mustbecarriedoutwhichrequiresanyearlyandnecessaryredimensioningormodificationstotheexistingnetwork.Asshown,bothSteps6and7canbedoneinparallel.Thefinalstepispilotdeployment.3.1.VoIPtrafficcharacteristics,requirements,andassumptionsForintroducinganewnetworkservicesuchasVoIP,onehastocharacterizefirstthenatureofitstraffic,QoSrequirements,andanyadditionalcomponentsordevices.Forsimplicity,weassumeapoint-to-pointconversationforallVoIPcallswithnocallconferencing.FordeployingVoIP,agatekeeperorCallManagernodehastobeaddedtothenetwork3,4,5.Thegatekeepernodehandlessignalingforestablishing,terminating,andauthorizingconnectionsofallVoIPcalls.AlsoaVoIPgatewayisrequiredtohandleexternalcalls.AVoIPgatewayisresponsibleforconvertingVoIPcallsto/fromthePublicSwitchedTelephoneNetwork(PSTN).Asanengineeringanddesignissue,theplacementofthese6nodesinthenetworkbecomescrucial.Wewilltacklethisissueindesignstep5.OtherhardwarerequirementsincludeaVoIPclientterminal,whichcanbeaseparateVoIPdevice,i.e.IPphones,oratypicalPCorworkstationthatisVoIP-enabled.AVoIP-enabledworkstationrunsVoIPsoftwaresuchasIPSoftPhones.Fig.3identifiestheend-to-endVoIPcomponentsfromsendertoreceiver9.Thefirstcomponentistheencoderwhichperiodicallysamplestheoriginalvoicesignalandassignsafixednumberofbitstoeachsample,creatingaconstantbitratestream.Thetraditionalsample-basedencoderG.711usesPulseCodeModulation(PCM)togenerate8-bitsamplesevery0.125ms,leadingtoadatarateof64kbps.ThepacketizerfollowstheencoderandencapsulatesacertainnumberofspeechsamplesintopacketsandaddstheRTP,UDP,IP,andEthernetheaders.Thevoicepacketstravelthroughthedatanetwork.Animportantcomponentatthereceivingend,istheplaybackbufferwhosepurposeistoabsorbvariationsorjitterindelayandprovideasmoothplayout.Thenpacketsaredeliveredtothedepacketizerandeventuallytothedecoderwhichreconstructstheoriginalvoicesignal.WewillfollowthewidelyadoptedrecommendationsofH.323,G.711,andG.714standardsforVoIPQoSrequirements.7Table1comparessomecommonlyusedITU-Tstandardcodecsandtheamountofone-waydelaythattheyimpose.ToaccountforupperlimitsandtomeetdesirablequalityrequirementaccordingtoITUrecommendationP.800,wewilladoptG.711ucodecstandardsfortherequireddelayandbandwidth.G.711uyieldsaround4.4MOSrating.MOS,MeanOpinionScore,isacommonlyusedVoIPperformancemetricgiveninascaleof15,with5isthebest.However,withlittlecompromisetoquality,itispossibletoimplementdifferentITU-Tcodecsthatyieldmuchlessrequiredbandwidthpercallandrelativelyabithigher,butacceptable,end-to-enddelay.Thiscanbeaccomplishedbyapplyingcompression,silencesuppression,packetlossconcealment,queuemanagementtechniques,andencapsulatingmorethanonevoicepacketintoasingleEthernetframe.3.1.1.End-to-enddelayforasinglevoicepacketFig.3illustratesthesourcesofdelayforatypicalvoicepacket.Theend-to-enddelayissometimesreferredtobyM2EorMouth-to-Eardelay.G.714imposesamaximumtotalone-waypacketdelayof150msend-to-endforVoIPapplications.In22,adelayofupto200mswasconsideredtobeacceptable.Wecanbreakthisdelaydownintoatleastthreedifferentcontributingcomponents,whichareasfollows(i)encoding,compression,andpacketizationdelayatthesender(ii)propagation,transmissionandqueuingdelayinthenetworkand(iii)buffering,decompression,depacketization,decoding,andplaybackdelayatthereceiver.3.1.2.BandwidthforasinglecallTherequiredbandwidthforasinglecall,onedirection,is64kbps.G.711codecsamples20msofvoiceperpacket.Therefore,50suchpacketsneedtobetransmittedpersecond.Eachpacketcontains160voicesamplesinordertogive8000samplespersecond.EachpacketissentinoneEthernetframe.Witheverypacketofsize160bytes,headersofadditionalprotocollayersareadded.TheseheadersincludeRTP+UDP+IP+Ethernetwithpreambleofsizes12+8+20+26,respectively.Therefore,atotalof226bytes,or1808bits,needstobetransmitted50timespersecond,or90.4kbps,inonedirection.Forbothdirections,therequiredbandwidthforasinglecallis100ppsor180.8kbpsassumingasymmetricflow.83.1.3.OtherassumptionsThroughoutouranalysisandwork,weassumevoicecallsaresymmetricandnovoiceconferencingisimplemented.Wealsoignorethesignalingtrafficgeneratedbythegatekeeper.Webaseouranalysisanddesignontheworst-casescenarioforVoIPcalltraffic.Thesignalingtrafficinvolvingthegatekeeperismostlygeneratedpriortotheestablishmentofthevoicecallandwhenthecallisfinished.Thistrafficisrelativelysmallcomparedtotheactualvoicecalltraffic.Ingeneral,thegatekeepergeneratesnoorverylimitedsignalingtrafficthroughoutthedurationoftheVoIPcallforanalreadyestablishedon-goingcall.Inthispaper,wewillimplementnoQoSmechanismsthatcanenhancethequalityofpacketdeliveryinIPnetworks.AmyriadofQoSstandardsareavailableandcanbeenabledfornetworkelements.QoSstandardsmayincludeIEEE802.1p/Q,theIETFsRSVP,andDiffServ.Analysisofimplementationcost,complexity,management,andbenefitmustbeweighedcarefullybeforeadoptingsuchQoSstandards.Thesestandardscanberecommendedwhenthecostforupgradingsomenetworkelementsishighandthenetworkresourcesarescarceandheavilyloaded.3.2.VoIPtrafficflowandcalldistributionKnowingthecurrenttelephonecallusageorvolumeoftheenterpriseisanimportantstepforasuccessfulVoIPdeployment.BeforeembarkingonfurtheranalysisorplanningphasesforaVoIPdeployment,collectingstatisticsaboutofthepresentcallvolumeandprofilesisessential.SourcesofsuchinformationareorganizationsPBX,telephonerecordsandbills.Keycharacteristicsofexistingcallscanincludethenumberofcalls,numberofconcurrentcalls,time,duration,etc.Itisimportanttodeterminethelocationsofthecallendpoints,i.e.thesourcesanddestinations,aswellastheircorrespondingpathorflow.Thiswillaidinidentifyingthecalldistributionandthecallsmadeinternallyorexternally.Calldistributionmustincludepercentageofcallswithinandoutsideofafloor,building,department,ororganization.Asagoodcapacityplanningmeasure,itisrecommendedtobasetheVoIPcalldistributiononthebusyhourtrafficofphonecallsforthebusiestdayofaweekoramonth.ThiswillensuresupportofthecallsatalltimeswithhighQoSforallVoIPcalls.9Whensuchcurrentstatisticsarecombinedwiththeprojectedextracalls,wecanpredicttheworst-caseVoIPtrafficloadtobeintroducedtotheexistingnetwork.Fig.4describesthecalldistributionfortheenterpriseunderstudybasedontheworstbusyhourandtheprojectedfuturegrowthofVoIPcalls.Inthefigure,thecalldistributionisdescribedasaprobabilitytree.Itisalsopossibletodescribeitasaprobabilitymatrix.Someimportantobservationscanbemadeaboutthevoicetrafficflowforinter-floorandexternalcalls.Forallthesetypeofcalls,thevoicetraffichastobealwaysroutedthroughtherouter.ThisissobecauseSwitchs1and2arelayer2switcheswithVLANsconfiguration.Onecanobservethatthetrafficflowforinter-floorcallsbetweenFloors1and2imposestwicetheloadonSwitch1,asthetraffichastopassthroughtheswitchtotherouterandbacktotheswitchagain.Similarly,Switch2experiencestwicetheloadforexternalcallsfrom/toFloor3.3.3.DefineperformancethresholdsandgrowthcapacityInthisstep,wedefinethenetworkperformancethresholdsoroperationalpointsforanumberofimportantkeynetworkelements.Thesethresholdsaretobeconsideredwhendeployingthenewservice.Thebenefitistwofold.First,therequirementsofthenewservicetobedeployedaresatisfied.Second,addingthenewserviceleavesthenetworkhealthyandsusceptibletofuturegrowth.Twoimportantperformancecriteriaaretobetakenintoaccount.10Firstisthemaximumtolerableend-to-enddelay;andsecondistheutilizationboundsorthresholdsofnetworkresources.Themaximumtolerableend-to-enddelayisdeterminedbythemostsensitiveapplicationtorunonthenetwork.Inourcase,itis150msend-to-endforVoIP.Itisimperativetonotethatifthenetworkhascertaindelaysensitiveapplications,thedelayfortheseapplicationsshouldbemonitored,whenintroducingVoIPtraffic,suchthattheydonotexceedtheirrequiredmaximumvalues.Asfortheutilizationboundsfornetworkresources,suchboundsorthresholdsaredeterminedbyfactorssuchascurrentutilization,futureplans,andforeseengrowthofthenetwork.Properresourceandcapacityplanningiscrucial.Savvynetworkengineersmustdeploynewserviceswithscalabilityinmind,andascertainthatthenetworkwillyieldacceptableperformanceunderheavyandpeakloads,withnopacketloss.VoIPrequiresalmostnopacketloss.Inliterature,0.15%packetlosswasgenerallyasserted.However,in24therequiredVoIPpacketlosswasconservativelysuggestedtobelessthan10.Amorepracticalpacketloss,basedonexperimentation,of5below1%wasrequiredin22.Hence,itisextremelyimportantnottoutilizefullythenetworkresources.Asrule-of-thumbguidelineforswitchedfastfull-duplexEthernet,theaverageutilizationlimitoflinksshouldbe190%,andforswitchedsharedfastEthernet,theaveragelimitoflinksshouldbe85%25.Theprojectedgrowthinusers,networkservices,business,etc.mustbealltakenintoconsiderationtoextrapolatetherequiredgrowthcapacityorthefuturegrowthfactor.Inourstudy,wewillascertainthat25%oftheavailablenetworkcapacityisreservedforfuturegrowthandexpansion.Forsimplicity,wewillapplythisevenlytoallnetworkresourcesoftherouter,switches,andswitched-Ethernetlinks.However,keepinmindthispercentageinpracticecanbevariableforeachnetworkresourceandmaydependonthecurrentutilizationandtherequiredgrowthcapacity.Inourmethodology,thereservationofthisutilizationofnetworkresourcesisdoneupfront,beforedeployingthenewservice,andonlytheleft-overcapacityisusedforinvestigatingthenetworksupportofthenewservicetobedeployed.3.4.PerformnetworkmeasurementsInordertocharacterizetheexistingnetworktrafficload,utilization,andflow,network11measurementshavetobeperformed.Thisisacrucialstepasitcanpotentiallyaffectresultstobeusedinanalyticalstudyandsimulation.Thereareanumberoftoolsavailablecommerciallyandnoncommerciallytoperformnetworkmeasurements.Popularopen-sourcemeasurementtoolsincludeMRTG,STG,SNMPUtil,andGetIF26.AfewexamplesofpopularcommerciallymeasurementtoolsincludeHPOpenView,CiscoNetflow,LucentVitalSuite,PatrolDashBoard,OmegonNetAlly,AvayaExamiNet,NetIQVivinetAssessor,etc.Networkmeasurementsmustbeperformedfornetworkelementssuchasrouters,switches,andlinks.Numeroustypesofmeasurementsandstatisticscanbeobtainedusingmeasurementtools.Asaminimum,trafficratesinbitspersecond(bps)andpacketspersecond(pps)mustbemeasuredforlinksdirectlyconnectedtoroutersandswitches.Togetadequateassessment,networkmeasurementshavetobetakenoveralongperiodoftime,atleast24-hperiod.Sometimesitisdesirabletotakemeasurementsoverseveraldaysoraweek.Onehastoconsidertheworst-casescenariofornetworkloadorutilizationinordertoensuregoodQoSatalltimesincludingpeakhours.Thepeakhourisdifferentfromonenetworktoanotheranditdependstotallyonthenatureofbusinessandtheservicesprovidedbythenetwork.Table2showsasummaryofpeak-hourutilizationfortrafficoflinksinbothdirectionsconnectedtotherouterandthetwoswitchesofthenetworktopologyofFig.1.Thesemeasuredresultswillbeusedinouranalysisandsimulationstudy.12中文翻译稿以太网网络电话传送调度:方法论和案例分析KhaledSalah,信息与计算机科学,FahdUniversity皇家石油矿物大学,信箱5066,Dhahran31261,沙特阿拉伯半岛收到日期2004年5月25日;校正日期2005年6月3日;接受日期2005年6月3日。网上可用日期2005年7月1日。摘要对网络数据为研究人员和设计师来说,IP电话或通过IP电话语音调度是一项重要而艰巨的任务。本文中介绍的标准和循序渐进的方法,介绍了语音的成功如何通过IP调度传输。该方法可用于支持评估和对现有网络的使用做准备。购买和部署网络电话设备设备之前,这种方法出来的预算,以确保现有和未来网络的网络电话设备足够的扩展能力基础上的呼叫数量的服务质量要求。作为一个研究课题,我们在一个典型的小型企业把这个方法网上已经逐步应用。我们使用分析和模拟吞吐量和延迟方面。我们的分析是基于排队论和OPNET仿真。比较一致的理论分析和仿真结构。此外,我们谈到了很多的设计和工程问题。这些问题包括功能和网络电话设备通信服务质量要求,网络电话设备流和呼叫分配,定义未来增长能力,确定背景流量的影响。这些天来大规模部署的VoIP正在发生通过数据网络。大多数网络都是基于以太网和运行IP协议。许多网络管理人员发现它非常有吸引力和成本效益进行合并和统一的语音和数据网络为一体。这是比较容易运行,管理和维护。然而,人们必须记住,IP网络是被设计用于非实时应用尽力而为的网络。在另一方面,网络电话需要及时的数据包传送的低时延,抖动,丢包和足够的带宽。为了实现这一目标,一个高效部署的VoIP必须确保这些实时路况要求可保证在新的或现有的IP网络。在部署新的网络服务,例如VoIP在现有的网络,许多网络设计师,管理人员,策划人员,设计师和工程师都面临着共同的战略,有时具有挑战性的,问题。什么是VoIP的要求?新的VoIP负荷将如何影响服务质量为当前运行的网络服务和应用?我现有的网络支持VoIP和满足规范的QoS要求?如果是这样,有多少VoIP电话可以在之前的网络支持升级过早任何部分13现有的网络硬件?这些具有挑战性的问题导致了用于测试的数据网络多媒体应用的性能一些商业工具的开发。那支持VoIP的可商业化的工具列表中列出的1,2。在大多数情况下,这些工具的使用在评估部署的VoIP纳入现有的网络两种常见的方法。一种方法是基于第一次执行网络测量和预测,然后在网络准备就绪,支持VoIP。网络就绪的预测是基于评估网络元件的健康状况。第二种方法是基于真正注入VoIP流量到现有的网络并测量产生的时延,抖动和丢包。除与商业工具相关的成本,没有一个商业工具提供了成功的VoIP部署一个全面的方法。特别是,没有给出任何预测,可以由网络考虑到重要的设计和工程因素来支持呼叫的总数。这些因素包括:对VoIP的VoIP流和呼叫分配,未来增长的容量,性能阈值,网络电话对现有的网络服务和应用程序的影响,而影响背景流量。本文试图解决这些重要因素和布局成功部署的任何多媒体应用,如VoIP和视频会议的全面的方法。然而,本文的重点是网络电话的部署感兴趣的新服务。该文件还包含了许多有用的工程和设计准则,并讨论有关VoIP的部署许多实际问题。这些问题包括VoIP流量和QoS的要求,VoIP流的特点和呼叫分配,定义未来增长的能力,以及测量和背景流量的影响。作为一个案例研究中,我们说明了如何我们的方法和指导原则可以应用到一个小企业的典型网络。本文的其余部分安排如下。第2节介绍一个小企业要作为部署VoIP的一个案例研究的一个典型的网络拓扑结构。第3节概述了实用的八个步骤的方法来部署成功的VoIP在数据网络。每个步骤中相当详细地描述。第4节介绍的基础上,分析和仿真研究作出重要的设计和工程决

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论