文献翻译——热电偶冷端补偿_第1页
文献翻译——热电偶冷端补偿_第2页
文献翻译——热电偶冷端补偿_第3页
文献翻译——热电偶冷端补偿_第4页
文献翻译——热电偶冷端补偿_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1页外文文献资料ImplementingCold-JunctionCompensationinThermocouple1.ApplicationsAbstract:Thermocouplesareoneofthemostwidelyusedtemperature-measurementdevicesbecauseoftheirruggedness,repeatability,andfastresponsetime.Thisapplicationnotediscussesthebasicoperationofathermocouple,whichincludesthedefinitionandfunctionofareference(cold)junction.Thenotealsogivesguidelinesforselectingadeviceforcold-junctiontemperaturemeasurementbasedonapplicationneeds.Threecircuitexamplesareshown.2.IntroductionOfthemanytransducersavailablefortemperature-measurementapplications,thermocouplesareamongthemostcommon.Thermocouplesarefoundineverydaysystemssuchasautomobilesandhomeappliances.Theyofferacost-effectivemeansformeasuringamuchwiderrangeoftemperaturesthanothercommonsolutionslikeresistancetemperaturedevices(RTDs),thermistors,andtemperature-sensingintegratedcircuits(ICs).Inaddition,ruggedness,repeatability,andfastresponsetimemakethermocouplesapopularchoiceinmanyenvironments.Thereare,however,somedisadvantagestousingthermocouples,notablyitslackoflinearity.AlthoughthermocouplescanbeusedoverawiderrangeoftemperaturesthanRTDsandtemperature-sensingICs,theyarefarlesslinear.Also,RTDsandtemperature-sensingICstypicallyofferbettersensitivityandaccuracy,twodesirablecharacteristicsformorepreciseapplications.Thermocouplesignalsareverylow-levelandoftenrequireamplificationorahigh-resolutiondataconvertertoprocessthesignals.Despitetheabovedisadvantages,overallcost,easeofuse,andwide第2页temperaturerangestillmakethermocouplespopular.3.ThermocoupleBasicsThermocouplesaredifferentialtemperature-measurementdevices.Theyareconstructedwithtwowiresmadefromdissimilarmetals.Onewireispredesignatedasthepositiveside,andtheotherasthenegative.Table1liststhefourmostcommonthermocoupletypes,themetalsoralloysused,andthetemperaturerangeallowedforeachtype.Eachthermocoupletypeoffersauniquethermoelectriccharacteristicoveritsspecifiedtemperaturerange.Table1.BasicThermocoupleCharacteristicsTypePositiveMetal/AlloyNegativeMetal/AlloyTemperatureRange(C)TCopperConstantan-200to+350JIronConstantan0to+750KChromelAlumel-200to+1250EChromelConstantan-200to+900Ifthetwodifferentmetalsarejoined(i.e.,weldedorsoldered)toformtwojunctions,asinFigure1a,thevoltagegeneratedbytheloopisafunctionofthetemperaturedifferencebetweenthetwojunctions.ThisphenomenonisknownastheSeebeckeffect,generallydescribedastheprocessinwhichthermalenergyisconvertedintoelectricalenergy.TheSeebeckeffectistheoppositeofthePeltiereffect,inwhichelectricalenergyisconvertedintothermalenergy,asobservedinapplicationssuchasthermoelectriccoolers.Figure1ashowsthatthemeasuredoutputvoltage,VOUT,isthedifferencebetweenthemeasuring(hot)junctionvoltageandthereference(cold)junctionvoltage.SinceVHandVCaregeneratedbyatemperaturedifferencebetweenthetwojunctions,VOUTisalsoafunctionof第3页thistemperaturedifference.Thescalefactor,whichrelatesthevoltagedifferencetothetemperaturedifference,isknownastheSeebeckcoefficient.Figure1a.TheloopvoltagegeneratedbythetemperaturedifferencebetweentwojunctionsinthethermocoupleistheresultoftheSeebeckeffect.Figure1b.Themostcommonthermocoupleconfigurationhasthetwowiresofathermocouplejoinedatoneend.Theopenendofeachwireisconnectedtoanisothermicconnectormadeofcopper.Figure1billustratestheconfigurationmostcommonlyusedinthermocoupleapplications.Thisconfigurationintroducesathirdmetal(alsoknownasanintermediatemetal)intotheloopandtwoadditionaljunctions.Inthisexample,theopenendsofeachwireareelectricallyconnectedtowiresortracesmadeofcopper.Theseconnectionsintroducetwoadditionaljunctionsintothesystem.Aslongasthesetwojunctionsareatthesametemperature,theintermediatemetal(copper)hasnoeffectontheoutputvoltage.Thisconfigurationallowsthethermocoupletobeusedwithoutaseparatereferencejunction.VOUTisstillafunctionofthedifferencebetweenhot-andcold-第4页junctiontemperatures,relatedbytheSeebeckcoefficient.However,sincethethermocouplemeasurestemperaturedifferentially,thecold-junctiontemperaturemustbeknowninordertodeterminetheactualtemperaturemeasuredatthehotjunction.Thesimplestcaseoccurswhenthecoldjunctionisat0C,alsoknownasanice-bathreference.IfTC=0C,thenVOUT=VH.Inthiscase,thevoltagemeasuredatthehotjunctionisadirecttranslationoftheactualtemperatureatthatjunction.TheNationalBureauofStandards(NBS)provideslookuptablescontainingthecharacterizationdataofthermocouplevoltagesvs.temperaturesforvarioustypesofthermocouples.Thedataareallbasedonacold-junctiontemperatureof0C.Withanice-bathreference,youcandeterminethetemperatureofthehotjunctionbylookingforVHintheappropriatetable.Intheearlydaysofthermocouples,theice-bathreferenceservedasthestandardinthermocoupleapplications.Implementinganicebathtodayisimpracticalinmostsituations.Therefore,whenthecoldjunctionisnotat0C,thetemperatureofthisjunctionmustbeknowninordertodeterminetheactualhot-junctiontemperature.Theoutputvoltageofthethermocouplemustalsobecompensatedtoaccountforthevoltagecreatedbythenonzerocold-junctiontemperature.Thisprocessisknownascold-junctioncompensation.4.SelectingaDeviceforCold-JunctionTemperatureMeasurementAsexplainedabove,toimplementcold-junctioncompensation,thetemperatureofthecoldjunctionmustbedetermined.Thiscalculationcanbeaccomplishedwithanytypeoftemperature-measurementdevice.Amongthemorepopulardevicesaretemperature-sensingICs,thermistors,andRTDs.Eachfamilyofdevicesoffersadvantagesanddisadvantagesovertheothers,sotherequirementsofaspecificapplicationwilldeterminewhichtypetouse.Forapplicationsrequiringextremeaccuracy,acalibratedplatinumRTDoffersthebestperformanceacrossthewidesttemperaturerange.This第5页performancecomes,however,withhighcost.Thermistorsandsilicontemperature-sensingICsarecost-effectivealternativestoRTDsforapplicationsthatdonotrequiresuchhighaccuracy.ThermistorsoperateacrossawidertemperaturerangethansiliconICs.Nonetheless,temperature-sensingICsareoftenpreferredoverthermistorsbecauseoftheirlinearity;correctingathermistorsnonlinearitycanrequiretoomuchworkfromthesystemsmicrocontroller.Thetemperature-sensingICsprovideexcellentlinearitybutoperateacrossanarrowertemperaturerange.Insummary,acold-junctiontemperature-measurementdevicemustbeselectedtomatchtherequirementsofthesystem.Aswithanytemperature-measurementapplication,accuracy,temperaturerange,cost,andlinearityareallsignificantconsiderationsintheselectionprocess.Eachrequirementmustbeweighedcarefullyinordertoselecttheoptimalcombinationofcostandperformance.5.CrunchingtheNumbersOnceyouestablishamethodofcold-junctioncompensation,thecompensatedoutputvoltagemustbetranslatedintothecorrespondingtemperature.AsimpletranslationmethodusesthelookuptablesfromtheNBS.Implementinglookuptablesinsoftwarerequiresmemoryforstorage,butthetablesprovideaquick,accuratesolutionwhenmeasurementsmustberepeatedcontinuously.Twoothermethodsfortranslatingthermocouplevoltagestotemperaturerequiresomewhatmoreworkthanlookuptables:1)linearapproximationusingpolynomialcoefficients;and2)analoglinearizationofthethermocoupleoutputsignal.Softwarelinearapproximationispopularbecausenostorageisnecessaryexceptforthepredeterminedpolynomialcoefficients.Thereis,however,adisadvantagetothismethod:theprocessingtimeassociatedwithsolvingmultiple-orderpolynomials.Theprocessingtimeincreasesforhigherorderpolynomials,whicharetypicallyrequiredwhendealingwithawiderrangeoftemperatures.Fortemperatureswherehigherorderpolynomialsarerequired,第6页lookuptablescanprovebothmoreaccurateandmoreefficientthanlinearapproximation.Beforethedaysofmodernsoftware,analoglinearizationwascommonlyusedtoconvertthemeasuredvoltagetoatemperature(inadditiontomanuallysearchingthroughlookuptables).Thishardware-basedmethodusesanalogcircuitrytocorrectforthenonlinearityinathermocouplesresponse.Itsaccuracydependsontheorderofthecorrectionapproximationused.Thisapproachisstillcommonlyusedinmultimetersthatacceptthermocouplesignals.6.ApplicationCircuitsThefollowingexamplesshowthreemethodsofcold-junctioncompensationthatusesilicontemperature-sensingICs.Thethreecircuitsfocusonsimplesolutionsforapplicationsrequiringonlyanarrowcold-junctiontemperaturerange(0Cto+70Cand-40Cto+85C)andaccuracytowithinafewdegrees.Circuit1includesalocaltemperature-sensingICnearthecoldjunctiontodetermineitstemperature.Circuit2includesaremotediodetemperaturesensorthatisfedbyadiode-connectedtransistormounteddirectlyonthethermocoupleconnector.Circuit3includesananalog-to-digitalconverter(ADC)withon-chipcold-junctioncompensation.AllthreeexamplesusetheK-typethermocouple,whichisconstructedwithchromelandalumel.6.1.Example#1InthecircuitshowninFigure2,a16-bitsigma-deltaADCconvertsthelow-levelthermocouplevoltageintoa16-bitserialdigitaloutput.Anintegratedprogrammable-gainamplifierincreasestheADCsresolution,whichisoftenneededwhenworkingwithlow-levelthermocouplesignals.Atemperature-sensingIC,locatedincloseproximitytothethermocoupleconnector,measuresthetemperatureinthevicinityofthecoldjunction.ThismethodisbasedontheassumptionthatthetemperatureattheICis第7页approximatelythesameasthetemperatureatthecoldjunction.Theoutputvoltagefromthecold-junctiontemperaturesensorisconvertedbychannel2oftheADC.Thetemperaturesensorson-chip2.56VreferenceeliminatestheneedforaseparatereferenceIC.Figure2.Alocaltemperature-sensingIC(MAX6610)determinesthecold-junctiontemperature.Thetemperature-sensingICislocatednearthethermocoupleconnector(coldjunction).Theoutputvoltagesforthethermocoupleandthecold-junctiontemperaturesensorareconvertedbya16-bitADC(MX7705).Whenoperatedinbipolarmode,theADCcanconvertpositiveandnegativelevelsofthethermocouplevoltagepresentatchannel1.Channel2oftheADCconvertsthesingle-endedvoltageoutputoftheMAX6610intoadigitalsignalforthemicro-controllertoprocess.Thetemperature-sensingICsvoltageoutputisproportionaltothemeasuredcold-junctiontemperature.Todeterminetheactualhot-junctiontemperature,youmustfirstdeterminethecold-junctiontemperature.ThenusethelookuptablesprovidedbytheNBSforK-typethermocouplestotranslatethecold-junctiontemperatureintoitscorrespondingthermoelectricvoltage.AftercorrectingforthePGAsgain,addthisvoltagetothedigitizedthermocouplereading.Thentranslatethesumintoatemperature,againusingthelookuptables.Theresultistheactualtemperatureatthehot-junction.Table2displaysmeasurementstakenwhilesweepingthecold第8页junctionfrom-40Cto+85Cinanovenandkeepingthehotjunctionat+100Cinaseparateoven.Theaccuracyofthemeasurementsdependsgreatlyontheaccuracyofthelocaltemperature-sensingICandtheoventemperature.Table2.SampleMeasurementsfortheFigure2CircuitwiththeColdJunctionandHotJunctioninSeparateOvensCold-JunctionTemperature(C)MeasuredHot-JunctionTemperature*(C)Measurement#1-39.9+101.4Measurement#20.0+101.5Measurement#3+25.2+100.2Measurement#4+85.0+99.0*ThevaluesappearinginthecolumnlabeledMeasuredHot-JunctionTemperaturearethecompensated,hot-junctiontemperaturemeasurementstakenfromthecircuit.6.2.Example#2InFigure3,aremote-diodetemperature-sensingICmeasuresthecircuitscold-junctiontemperature.Unlikealocaltemperature-sensingIC,theremote-diodetemperaturesensorneednotbenearthecoldjunctionsinceitusesanexternaldiode-connectedNPNtransistortomeasurethecold-junctiontemperature.Thistransistorismounteddirectlyonthethermocoupleconnectorscopperretainerclip.Thetemperature-sensingICconvertsthesignalfromthisdiode-connectedtransistorintoadigitaloutput.TheADCschannel1convertsthethermocouplevoltageintoadigitaloutput.Channel2oftheADCisunusedandconnectedtoground.TheADCsreferenceinputisfedbyastable2.5VreferenceIC.第9页Figure3.Aremote-diodetemperature-sensorICneednotbenearthecoldjunction,sinceitusesanexternaldiodetosensethetemperature.Thisdiodecanbemounteddirectlyontheoptionalretainerclipofthethermocoupleconnector.TheMAX6002providesastable2.5VreferencevoltagefortheADC.Table3displaysthemeasurementstakenwiththecold-junctiontemperaturesweptfrom-40Cto+85Cwhilekeepingthehot-junctiontemperatureat+100C.Theaccuracyofthemeasurementsdependsontheaccuracyofboththeremote-diodetemperature-sensingICandtheoventemperature.Table3.SampleMeasurementsfortheFigure3CircuitwiththeColdJunctionandHotJunctioninSeparateOvens.Cold-JunctionTemperature(C)MeasuredHot-JunctionTemperature*(C)Measurement#1-39.8+99.1Measurement#2-0.3+98.4Measurement#3+25.0+99.7Measurement#4+85.1+101.5第10页*ThevaluesappearinginthecolumnlabeledMeasuredHot-JunctionTemperaturearethecompensated,hot-junctiontemperaturemeasurementstakenfromthecircuit.6.3.Example#3Figure4includesanICthatcombinesa12-bitADCwithatemperature-sensingdiode.Thetemperature-sensingdiodeconvertstheambienttemperatureintoavoltage.TheICtakesthisvoltageandthethermocouplevoltageandcalculatesthecompensatedhot-junctiontemperature.Thedigitaloutputisthecompensatedhot-junctiontemperaturemeasuredbythethermocouple.Theguaranteedtemperatureerrorofthisdeviceiswithin9LSBsforhot-junctiontemperaturesbetween0Cto+700C.Althoughthisdevicecanmeasureawiderangeofhot-junctiontemperatures,itcannotmeasuretemperaturesbelow0C.Figure4.AnADCwithintegratedcold-junctioncompensationconvertsthethermocouplevoltagewithouttheneedforexternalcompensation.Table4displaysmeasurementstakenfromthecircuitofFigure4withthecold-junctiontemperaturesweptfrom0Cto+70Cwhilekeepingthehotjunctionat+100C.Table4.SampleMeasurementsfortheFigure4CircuitwiththeColdJunctionandHotJunctioninSeparateOvensCold-JunctionTemperature(C)MeasuredHot-JunctionTemperature*(C)Measurement#10.0+100.25Measurement#2+25.2+100.25第11页Measurement#3+50.1+101.0Measurement#4+70.0+101.25*ThevaluesappearinginthecolumnlabeledMeasuredHot-JunctionTemperaturearethedecimalrepresentationofthedigitaloutputsprovidedbythecircuit.7.ConclusionWhenworkingwiththermocouples,youmustestablishareferencepointbecausethermocouplesaredifferentialtemperature-measurementdevices.Athermocoupleprovidesavoltagethatrepresentsthetemperaturedifferencebetweenthehotandcoldjunctions.Ifyouknowboththetemperatureofthecoldjunctionandthetemperatureofthehotjunctionrelativetothecold-junctiontemperature,youcandeterminetheactualhot-junctiontemperature.Themainselectioncriteriafortheappropriatecold-junctioncompensationdeviceareaccuracy,cost,linearity,andtemperaturerange.SomeplatinumRTDsofferthebestaccuracy,butathighcost.Thermistorsareinexpensiveandoperateoverawidetemperaturerange,buttheirlackoflinearitycanbeproblematic.Silicontemperature-sensingICsoperateoveranarrowtemperaturerange,butofferreasonableaccuracy,linearity,andlowcost,thusmakingthemasuitablechoiceformanythermocouplecold-junctioncompensationapplications.第12页中文翻译稿热电偶冷端补偿1.应用摘要:温度测量应用中,热电偶因其坚固性、可靠性以及较快的响应速度得到了普遍应用。本应用笔记讨论了热电偶的基本工作原理,包括参考端(冷端)的定义和功能。本文还给出了按照具体应用选择冷端温度测量器件的注意事项,并给出了三个设计范例。2.概述温度测量应用中有多种类型的变送器,热电偶是最常用的一种,可广泛用于汽车、家庭等领域。与RTD、电热调节器、温度检测集成电路(IC)相比,热电偶能够检测更宽的温度范围,具有较高的性价比。另外,热电偶的牢固、可靠性和快速响应时间使其成为各种工作环境下的首要选择。当然,热电偶在温度测量中也存在一些缺陷,例如,线性特性较差。虽然它们与RTD、温度传感器IC相比可以测量更宽的温度范围,但线性度却大打折扣。除此之外,RTD和温度传感器IC可以提供更高的灵敏度和精度,可理想用于精确测量系统。热电偶信号电平很低,常常需要放大或高分辨率数据转换器进行处理。如果排除上述问题,热电偶的低价位、易使用、宽温度范围使其得到广泛使用。3.热电偶基础热电偶是差分温度测量器件,由两段不同的金属/合金线构成,一段用作正端,另一段用作负端。表1列出了四种最常用的热电偶类型、所用金属以及对应的温度测量范围。每种热电偶在其规定的温度范围内具有独特的热电特性。第13页表1.常用的热电偶类型正型金属/合金负极金属/合金温度范围(C)T铜康铜-200to+350J铁康铜0to+750K铬铝镍合金-200to+1250E铬康铜-200to+900两种不同类型的金属接(焊接)在一起后形成两个结点,如图1a所示,环路电压是两个结点温差的函数。这种现象称为Seebeck效应,用于解释热能转换为电能的过程。Seebeck效应相对于Peltier效应,Peltier效应用于解释电能转换成热能的过程,典型应用有电热致冷器。图1a所示,测量电压VOUT是检测端(热端)结电压与参考端(冷端)结电压之差。因为VH和VC是由两个结的温度差产生的,VOUT也是温差的函数。定标因数,对应于电压差与温差之比,称为Seebeck系数。图1a.环路电压由热电偶两个结点之间的温差产生,是Seebeck效应的结果。第14页图1b.常见的热电偶配置由两条线连接在一端,每条线的开路端与铜恒温线连接。图1b所示是一种最常见的热电偶应用。该配置中引入了第三种金属(中间金属)和两个额外的节点。本例中,每个开路端与铜线电气连接,这些连线为系统增加了两个额外节点,只要这两个节点温度相同,中间金属(铜)不会影响输出电压。这种配置允许热电偶在没有独立参考结点的条件下使用。VOUT仍然是热端与冷端温度之差的函数,与Seebeck系数有关。然而,由于热电偶测量的是温度差,为了确定热端的实际温度,冷端温度必须是已知的。冷端温度为0C(冰点)时是一种最简单的情况,如果TC=0C,则VOUT=VH。这种情况下,热端测量电压是结点温度的直接转换值。美国国家标准局(NBS)提供了各种类型热电偶的电压特征数据与温度对应关系的查找表。所有数据均基于0C冷端温度。利用冰点作为参考点,通过查找适当表格中的VH可以确定热端温度。在热电偶应用初期,冰点被当作热电偶的标准参考点,但在大多数应用中获得一个冰点参考温度不太现实。如果冷端温度不是0C,那么,为了确定实际热端温度必须已知冷端温度。考虑到非零冷端温度的电压,必需对热电偶输出电压进行补偿,既所谓的冷端补偿。4.选择冷端温度测量器件如上所述,为了实现冷端补偿,必须确定冷端温度,这可以通过任何类型的温度检测器件实现。在通用的温度传感器IC、电热调节器和RTD中,不同类型的器件具有不同的优、缺点,需根据具体应用进行选择。对于精度要求非常高的器件,经过校准的铂RTD能够在很宽的温度范围内保持较高精度,但其成本很高。精度要求不是很高时,热敏电阻和硅温度传感器IC能够提供较高的性价比,热敏电阻比硅IC具有更宽的测温范围,而传感器IC具有更高的线性度,因而性能指标更好一第15页些。修正热敏电阻的非线性会占用较多的微控制器资源。温度传感器IC具有出色的线性度,但测温范围很窄。总之,必需根据系统的实际需求选择冷端温度测量器件,需要仔细考虑精度、温度范围、成本和线性指标,以便得到最佳的性价比。5.考虑因素一旦建立了冷端补偿方法,补偿输出电压必须转换成相应的温度。一种简单的方法既是使用NBS提供的查找表,用软件实现查找表需要存储器,但查找表对于连续的重复查询提供了一种快速、精确的测量方案。将热电偶电压转换成温度值的另外两种方案比查找表复杂一些,这两种方法是:1)利用多项式系数进行线性逼近,2)对热电偶输出信号进行模拟线性化处理。软件线性逼近只是需要预先确定多项式系数,不需要存储,因而是一种更通用的方案。缺点是需要较长时间解多阶多项式,多项式阶数越高,处理时间越长,特别是在温度范围较宽的情况下。多项式阶数较高时,查找表相对提供了一种精度更高、更有效温度测量方案。出现软件测试方案之前,模拟线性化常被用来将测量电压转换成温度值(除了人工查找表检索外)。这种基于硬件的方法利用模拟电路修正热电偶响应的非线性。其精度取决于修正逼近多项式的阶数,在目前能够测试热电偶信号的万用表中仍采用这种方法。6.电路中的应用下面讨论了三种利用硅传感器IC进行冷端补偿的典型应用,三个电路均

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论