文献翻译——一种新颖的单参数数字控制器对直流-直流转换器_第1页
文献翻译——一种新颖的单参数数字控制器对直流-直流转换器_第2页
文献翻译——一种新颖的单参数数字控制器对直流-直流转换器_第3页
文献翻译——一种新颖的单参数数字控制器对直流-直流转换器_第4页
文献翻译——一种新颖的单参数数字控制器对直流-直流转换器_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1页外文文献资料ANovelSingleParameterDigitalControllerforDC-DCConvertersFengLi,TingcunWei,YuliangZhengSchoolofComputerScienceandTechnology,NorthwesternPolytechnicalUniversityXianChinatttlifengmailnwpueducnAbstractControlparametersarenot0nlyOneforthetraditionalcontrollaw,sothedigitalcompensatorcontainsseverallook-uptables(LUT)fordigitallycontrolleddc-dcConvenersThispaperintroducessingleparameterdigitallycontroltechniquewhichhasonecontrolparameter,sothedigitalcompensatorfortheproposedcontrolconsistsofoneloop-uptablesandoneadder,thelayoutareacanbegreatlyreducedThecontrolparametereffecttotheconverterdynamicperformanceisanalyzedSimulationisprovidedtoverifythevalidityofsingleparameterdigitalcontrolKeywords:dc-dcconverter;discreteequivalents;transitionaltime;digitalpulse-widthmodulation;overshoot1.INTRODUCTIONDigitalcontrolofswitchingdcdcconvenershasattractedwideattentionsinrecentyearsduetomeadvantagesofprogrammability,robustnesstonoiseandhighflexibilityManydigitalcontrolmethodswerestudied1-15.Frequencydomainmethodandanalog-to-digitalredesignarestudiedintheliteraturel一5Thesdomaincontrollawisdesignedfirstlythenmappedintothez-domainTransferfunctionbasedonthediscreteequivalents1Implementedbylook-uptables,digitalproportionalplusintegralplusderivative(PID)controlisresearchedin2AnonlineardigitalPIDcontrolincludingnonlinearproportional,integralandderivativegainto第2页significantlyimprovedynamicresponsesisintroducedin3Consideringthezerocausedbyequivalentseriesresistance(ESR)ofmeOutputcapacitorcanoffsetapoleinthepowerstagetransferfunction,digitalproportionalplusintegral(PI)controlisdescribedin4ComparedwithdigitalPIDcontrol,digitalproportionalplusderivative(PD)controlproposedin5cangreatlydecreaselayoutareaanderrorshifttechniquetoeliminatesteady-stateerrorfordigitalPDcontrolisdescribedin5.Digitalcurrentmodecontroltechnique,withadvantagessuchassimplecompensation,inherentover-currentprotectionandexcellentaudiosusceptibilityiswidelyappliedforswitchingdc-dcconverters6一l0In6,7and8,peakcurrent,valleycurrentandaveragecurrentcontrolareresearched,respectively,butthenthdutycycleisdeterminedbythe(n1)thinductancecurrent,sothedigitalfeedbackloopmustbefastenoughtocalculatethedutycycleandapplyitimmediatelyT0reducethespeedrequirementfordigitalfeedbackloop,thecontrollawismodifiedin9andthetimeforcalculatingandupdatingthedutycycleisincreasedtoatleastoneswitchingperiod,butthebandwidthofconvertersbecomeslow.Assumingthatthedutycycleisupdatedin10tomaketrade-offsbetweentheconvertersbandwidthanddigitalhardwarecost.Oneofthetypicalintelligentcontrolsfordc-dcconvertersisdigitalknowledgeintolinguisticrules11-15.In11,fuzzycontrolsetisexpressedbunon-uniformtriangularmembershipfunctionsothatthedutycyclevariesatthenon-linearratefortheprecisevoltageregulation.ForPI-LikeFLCthatthedigitalcompensatorinputareimitatingtraditionalPIcontrollerisproposedin12toprovidetheorybasisforfuzzylogiccontroldesign.Utilizingsectornonlinearity,localapproximationandparalleldistributedcompensation(PDC)13,linearmatrixinequalities(LMI)-basedfuzzycontrolisdescribedandTakagi-Sugeno(T-S)fuzzycontrolisdescribedtoenhancethesystemrobustnessunderthemodelinguncertaintiesandexternaldisturbances.Basedonbuckdc-dcconverters,thispaperintroducedsingleparameter,sothestructureofdigitalcompensatorissimpleandhardwarecosisreducedgreatly.Insection,singleparametercontrollawisproposedand第3页theparametercomputingformulasarededuced.Insection,theparametereffecttoovershootandtransitionaltimeofdc-dcconvertersisanalyzed.Insection,thedigitalcircuitandhardwarecostfortheproposedcontrolisdiscussed.Insection,simulationshowsthevalidityofsingleparametercontrolandthecorrectnessofcorrespondinganalysis.Insection,theconclusionsaregiven.2.SINGLEPARAMETERCONTROLFig.1depictstheblockdiagramofbuckdc-dcconverters,inwhichsingleparameterdigitalcontrollawisapplied.Thefeedbackiscomposedofanalog-to-digitalconverter(ADC),digitalcompensatoranddigitalpulse-widthmodulator(DPWM),Vg,VandVrefareinputvoltage,outputvoltageandreferencevoltage,respectively.Digitalcompensatorproducesdigitaldutycycleu,DPWMcreatesthesquarewavewithanalogdutycycledwhichcontrolsthepowerstageswitchonorofftoregulatetheoutputvoltage.A.ControlLawThecontrolledobjectofconvertersshowninFig.1consistsofDPWM,ADCandthepowerstage.SelectinginductancecurrentanoutputVoltageasstatevariables,thesmall-signalstatespacemodelofthepowerstagecanbeobtained16:(1)(0)(10)(tdLVgtvDtiRCLtviR第4页Where,andwhichareinductancecurrent,outputvoltage,)(tiv)(gt)(dtinputvoltageanddutycycle,respectively,areallacsmallsignal.DPWMandADCtransferfunctionscanbeobtained2:(2)DPWMKN1/2(t)u/dpwm(3)Vg/tv/eacACWhereandaretheDPWMresolution,theADCresolutionDPWMNADC,respectively.andareacinputandacoutputofdigitalcompensator.)(et(t)uIntegralelementtoeliminatesteady-stateerrorneedstobeaddedintothecontrollaw,sosingleparametercontrollawisdefinedas:(4)sFte/)(/uWhereFistheonlycontrolparameter.Thesmall-signalconvertersblockdiagramundersingleparametercontrolisshowninFig.2,whereqisintegraloutput.Accordingto(4),thefollowingequationcanbededuced:(5).)(uFqtThesecond-ordercontrolledobjectistransferredtothird-ordersystemwhenintegralelementisaddedintocontrollaw.Selectingsignalqasthethirdstatevariables,thestatespacemodelofcontrolledobjectcanbeobtained:(6).(0)(0/1)(ituLVgKapwmtvDtqiKRCLtqvadcFrom(5)and(6),theclose-loopmodelofdc-dcconvertersshowninFig.2canbededuced:(7)(0)(0/1/(t)qvitgvLtqiHKRCFVgLapwmAccordingto(7),theconvertercharacteristicequationundersingleparametercontrolcanbededuced:第5页(8)LCVgHKFsRsT1)(23B.ControlParameterDesignTodiscussconveniently,thetargetcharacteristicequationfordc-dcConvertersisdefinedas:(9)(2(s2psTn)(Theparts+pplaystheleadingrolewhentheconverterisdesignedintoanapproximatefirst-ordersystem,theparameterintoanapproximatefirst-ordersystem,theparameterpisthedistancebetweentherealdominantpoleandtheimaginaryaxisincomplexplane.Onthecontrary,theotherpart2nsplaystheleadingroleifheconverterisanapproximatesecond-ordersystem,n,andnareratioofdamping,naturalfrequencyandattenuationcoefficient,respectively.Inordertocomparewith(8),(9)ischangedinto:(10)pssTnn232p)()(Withoutlossofgenerality,regardingtheconverterasanapproximatesecond-ordersystem,sopisfarmorethanattenuationcoefficientn,thenthetargetcharacteristicequationcanbeapproximatedas:(11)pssTnn223)()(From(8)and(11),makingthecorrespondingcoefficientequal,thefollowingequationscanbeobtained:(12.a)/(1pRC(12.b)2nLn(12.c)/HKFVgTheparameterpisconsideredasbeingfarmorethanattenuationcoefficientcoefficientissmallerthan1/(5RC)inpracticeaccordingto(12.a),meanwhile,第6页AttenuationcoefficientshouldbesmallerthanR/(2L)accordingto(12.b)because2nispositive,sotherestrictioninequalityforattenuationcoefficientcanbeobtained:(13)2/(,5/(1minLRCAttenuationcoefficientdeterminedtheconvertersbandwidthwhenratioofdampingisconstant.Assumingthatratioofdampingisequalto0.8anderrorbandisequalto0.05,therelationbetweentransitionaltimets,andattenuationcoefficientexists17:(14)/(5,3nstFrom(13)and(14),therestrictioninequalityfortransitionaltimecanbeobtained:(15)5.17,/maxtsRCLindicatestheconvertersbandwidthlimitundersingleparametercontrol.From(12.a),(12.b)and(12.c),thecomputingequationofcontrolparametercanbededuced:(16)CVgHKRLF2nTheanalysisprocessisthesameastheabovecontentsiftheconverterisanapproximatefirst-ordersystem.TableIdepictsrestrictioninequalitiesandcomputingequationsundersingleparametercontrol.CONTROLPARAMETEREFFECCTTOCONVERTERSWhencontrolparameterFdecreases,attenuationcoefficientincreasesaccordingto(16)andnaturalfrequencydecreasesaccordingto(12.c),soratioofdampingincreases,thenbothovershootandtransitionaltimedecrease.DC-dcconverterschangedfromapproximatesecond-ordertoapproximatefirst-order,andpbecomesdominantascontrolparameterFdecreasescontinually.Asaresult,theparameterpdecreasesandtransitionaltimebeginstoincrease.Tabledepictscontrolparametereffecttoovershootandtransitionaltimefordc-dcconverters.Itcanbeobservedthatovershoot第7页decreasestozeroandtransitionaltimedecreasesfirstlythenincreases,sothereistheoptimaldynamicperformanceundersingleparametercontrol.IMPLEMENTDIGITALCOMPENSATORDiscreteequivalentsthatthes-domaintransferfunctionismappedintoz-domainincludeEulermethod,zero-polematchingandholdequivalents1.BackwardEulerisappliedinthispaperduetoitsbriefness:(17)Tz/)1(sFrom(4)and(17),thedifferenceequationofsingleparametercontrollawisobtained:)(1()ukaek(18.a)TF(18.b)TheblockdiagramofdigitalsingleparametercompensatorisshowninFig.3accordingto(18).Theinputofdigitalcompensatoronlytakesseveralvaluesbecausewindow-ADCisappliedfordigitallycontrolleddc-dcconverters,sothecoefficientmultiplicationindifferenceequation(18)canbeimplementedbylook-uptablesAtoreducefeedbackloopdelay,thenthecompensatorcircuitonlyconsistsofonelook-uptablesandoneadder.Inthespecialcasecoefficientaisequalto,thelook-uptablescanbeN2/1replacedbyoneshifterandthecircuitbecomesmoresimple.SMULATIONRESULTSThissectionpresentsthesimulationresultsbyMATLAB/SIMULINKtoverifythevalidityofsingleparametercontrol.Basedonthebuckdc-dcconvertersshowninFig.1,wechoosethefollowingcircuitparametersforcontinuousconductionmode(CCM):Fs=1.0MHz,L=22.0uH,C=22.0uf,R=2.77,=6.0v,V=2.7vgVWesetcontrolparameterFequalto25000and15000,socoefficientaisequalto0.025and0.015.Fig.4showsoutputcharacteristicsundersingleparametercontrol,withinputvoltagestepchangefrom6Vto7Vat10msandbackto6Vat20ms,theconverterisanapproximatesecond-ordersystem.It第8页canbeobservedthatoutputvoltageundershootsto2.45V,andtransitionaltimeis1.8msforcoefficientaequalto0.025,whileoutputvoltageundershootsto2.62V,andtransitionaltimeis0.9msforcoefficientaequalto0.015.Obviously,overshootandtransitionaltimebothdecreaseascontrolparameterFdecreasesforapproximatesecond-orderconverters.Fig.5showsoutputcharacteristicsforapproximatefirst-orderconverters,settingFequalto3000and1000,aequalto0.003and0.001.Inputvoltagestepchangeisthesameastheabovesimulationcontents.Outputcurveshowsfirst-orderfeaturesduringtheoveralltransitionalperiod,althoughthesecond-orderoscillatorycomponentexistsslightly.Transitionaltimeis2msforcoefficientaequalto0.003,4msforcoefficientaequalto0.001,sotransitionaltimeincreasesascontrolparameterFdecreasesforapproximatefirst-orderconverters.Fig.6showstheloadtransientcharacteristicsforsingleparametercontrol,withtheloadstepchangefrom1Ato1.5Aat1.5msandbackto1Aat2.5ms,thecircuitparametersneverchangeexceptthatinductancevalueisequalto1uH.SettingFequalto10000andaequalto0.01,theoutputcurveshowsthatovershootis3.7%,andtransitionaltimeis0.3ms.第9页.CONCLUSIONBasedonbuckdc-dcconverters,thispaperintroducessingleparameterdigitalcontrolwhichincludesonecontrolparameterincontrollaw,anddrawaconclusionthatovershootdecreasestozeroandtransitionaltimedecreasesfirstlythenincreasesasthecontrolparameterdecreasesundersingleparametercontrol.Layoutareaisgreatlyreducedduetodigitalcompensatorwhichonlyincludesonelook-uptablesandoneadder.Simulationshowsthevalidityoftheproposedcontrolandthecorrectnessofcorrespondinganalysis.ACKNOWLEDGEMENTTheauthorswouldliketothanktheNationalnaturalScienceFoundationofChina(NO.60972157)forsupportingthisproject.REFERENCES1.G.F.Franklin,J.D.Powell.DigitalControlofDynamicSystems.Reading,MA:Addison-Wesley,1998,pp.73-101.2.B.J.Patella,A.Prodic,A.Zirger,D.Maksimovic,”High-FrequencyDigitalPWMControllerICforDC-DC第10页Converters.”IEEETransactionsonPowerElectronics,vol.18.no.1,January2003,pp.438-446.3.V.Yousefzadeh,s.Choudhury,”NonlinearDigitalPIDControllerferDC-DCConverters.”inProc.AppliedPowerElectronicsConferenceandExposition,February2008,pp,1704-1709.4.HaijaioGuo,Y.ShiroishiandO.Ichinoha,”DigitalPIControllerforHighFrequencySwitchingdc-dcConvertersBasedonFPGA.”inproc.TelecommunicationsEnergyConference,October2003.pp.536-541.5.FengLi,TingcunWei.“DigitalProportionalplusDerivativeControllerforswitchingDC-DCConverters.”inproc.Internationalconferenceoncomputer.Mechatronics,controlandElectronicEngineering(CMCE).August2010,pp,373-376.6.M.Aime,etal.,”ImplementationofaPeak-Current-ControlAlgorithmwithaFieldProgrammableGateArray,”IEEETransactionsonIndustrialElectronics,vol.54.pp.406-418.2007.7.Guohuazhou,jianpingxu,“DigitalValleyCurrentControlledSwitchingDC-DCConverters.”JournalofSouthwestJiaotongUniversit.vol.6.December2009.pp.865-870.8.Guohuazhou,jianpingxu,“DigitalAverageCurrentControlledSwitchingDC-DCConverterswithSingle-EdgeModulation.”IEEETransactionsonpowerelectronic,vol.25,no.3.March2010,pp.786-793.9.JingquanChen,AleksandarProdic,“PredictiveDigitalCurrentProgrammedControl”IEEETransactionsonpowerElectronics.vol18,no1January2003,pp411-41910.SBibian,HJin,“ASimplePredictionTechniquefortheCompensationofDigitalControlTimeDelayinDCSwitchmodePowerSupplies”inProcAppliedPowerE1ectronicsConferenceandExpositionMay1999,pp994一l00011.KVisanathadn,DSrinivasarn,ORucanti“AUniversalFuzzyControllerforaNonlinearPowerElectronicConvener”2002IEEEInternationalConferenceonFuzzySystems.May2002pp465112.AGPerry,GuangfengandYanfeiLiu,“ADesignMethodforPi-LikeFuzzyLogicControllersforDC-DCConverterIEEETransactionsonIndustrialElectronics,vol_54,no5,October2007pp2688-269613.KTanaka,HOwang,FuzzyControlSystemsDesignandAnalysisNewYork:Wiley,2001pp62-6614.KuangyowLianJeihjangLiou,andChienyuHuang“LMI-BasedIntegralFuzzyControlofDCDCConverters”IEEETransactionsonFuzzySystems,V0114no1,February2006pp70-8015.SAruselviCRameshKumarandCUma“DesignofFuzzySlidingModeControlforDC-DC第11页Convener”inProcInternationalconferenceonIntelligentSensingandinformationProcessing,January2005pp217-22216.RobertwE,DraganM“Fundamentalsofpowerelectronics,”2ndcdBoston:K1uwcrAcademicPublishersGroup.200017.ShowsongHu,“Theoryofautomaticcontrol”5thcdBeijing:SciencePublishers,2007,pp98-121第12页中文翻译稿一种新颖的单参数数字控制器对直流-直流转换器摘要控制参数不解脱的一个传统的控制律,所以数字补偿器包含几个查找表(LUT)数控直流-直流转换器.这介绍单一参数数字化控制技术有一个控制参数,因此提出的数字补偿器控制由一个透视表和一个加法器,可以大大减少布局区域。控制参数影响变换器动态性能是分析计算提供验证单一参数数字控制的有效性。关键词:直流-直流转换器;离散等价物;过渡时间;数字脉宽调制;过度1.介绍数字控制的开关电源召集人已经吸引了广泛关注,近年来由于我优势的可编程性,鲁棒性噪声和高flexibility.Many数字控制方法进行了研究1-15。频域方法和模拟数字设计研究在文献l一5,s-domain控制律设计首先然后映射到z-domain基于等效离散传递函数1.Implemented通过查找表,数字比例积分微分(PID)控制研究2。非线性数字PID控制包括非线性比例、积分和微分增益显著提高动态响应了3.Considering等效串联电阻引起的零(ESR)我的输出电容器可以抵消功率级传递函数的极点,数字比例积分(PI)控制4中描述与数字PID控制相比,数字比例微分(PD)控制提出了5可以大大减少布局区域和错误转变技术消除。数字电流模式控制技术,与简单的补偿等优点,在固有流式保护和优秀的音频susceptibility.广泛应用于开关直流-直流转换器6一10。6,7,8,峰值电流,谷电流和平均电流控制进行了研究,分别,但最近的工作周期是由(n-1)届电感电流,因此数字反馈回路必须足够快的速度来计算工作周期和应用它immediately.T0减少的速度要求数字反馈回路控制律是修改9和时间计算和更新的责任周期增加到至少一个开关,但是转换器的带宽就低。假设10的周期性更新使转换器带宽和数字硬件成本之间的权衡。一个典型的智能控制的直流-直流转换器是数字知识转化为语言规则(11-15)。在11,模糊控制表示布鲁里溃疡不均匀三角隶属函数,非线性的周期性变化为精确的电压调整率。对于PI-LikeFLC的数字补偿器输入模仿传统PI控制器提出了12为模糊逻辑控制设计提供理论依据。利用部门的非线性,当地近似和并行分布补偿(PDC)13,线性矩第13页阵不等式(LMI)的模糊控制和描述Takagi-Sugeno(人工)描述模糊控制提高系统鲁棒性建模不确定性和外部干扰。基于直流-直流转换器,介绍了单一参数,因此数字补偿器的结构是简单和硬件因为大大降低。节、单参数控制律,提出了参数计算公式推导出。节,参数效应过度和过渡时间的直流-直流转换器进行了分析。节中,提出的数字电路和硬件成本控制进行了探讨。节、模拟显示了单参数控制的有效性和相应的分析的正确性。节中,给出了结论。2单参数控制图1描述了降压的框图直流-直流转换器,单一参数的数字控制律。反馈是由模拟-数字转换器(ADC)、数字补偿器和数字脉宽调制器(DPWM),Vg,V和Vref输入电压,输出电压和基准电压,分别。数字补偿器产生数字工作周期,DPWM创建与模拟工作周期方波d控制功率级开关打开或关闭来调节输出电压。A控制规则图1所示的控制对象的转换器由DPWM、ADC和功率级。选择电感电流输出电压作为状态变量,功率级的小信号状态空间模型可以获得16:)(0)(10)(tdLVgvDtiRCLtviR(1)电感电流,输出电压、输入电压和责任周期,分别都是交流小signal.DPWM和ADC转换函数可以获得2:(2)DPWMKN1/2(t)u/dpwm(3)Vg/tv/eacACDPWM分辨率,ADC的分辨率,respectively.和ac输入和交流输出的数字补偿器。积分环节消除稳态误差需要添加到控制律,所以单参数控制律的定义是:第14页(4)sFte/)(/u在F是唯一的控制参数。单参数控制下的小信号转换器框图是图2所示,问在哪里积分输出。根据(4),下列方程可以推导出:(5).)(uFqt二阶控制对象转移到三阶系统当积分元素添加到控制律。选择信号问作为第三个状态变量,控制对象的状态空间模型可以得到:(6)).(0)()(0/1)(ituLVgKapwmtvDtqiKRCLtqvadc(5)和(6),图2所示的闭环直流-直流转换器模型可以推导出:(7)(00/1/(t)qvitgvLtqiHRFVgLapwm根据(7),转炉单参数控制下的特征方程可以推导出:(8)LCKssT)(23B控制参数设计讨论方便,直流-直流转换器的目标特征方程的定义是:(9)(2(s2psTn)(部分起主要作用的s+p当转换器设计成一个近似的一阶系统,参数为一个近似的一阶系统,参数p是真正的主导极点之间的距离,在复平面虚轴。相反,起主要作用的另一部分如果他转换器是一个近似的二阶系统

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论