文献翻译——在苹果树冠的超声波测距传感器的性能_第1页
文献翻译——在苹果树冠的超声波测距传感器的性能_第2页
文献翻译——在苹果树冠的超声波测距传感器的性能_第3页
文献翻译——在苹果树冠的超声波测距传感器的性能_第4页
文献翻译——在苹果树冠的超声波测距传感器的性能_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

0外文文献资料PerformanceofanUltrasonicRangingSensorinAppleTreeCanopiesAbstract:Electroniccanopycharacterizationisanimportantissueintreecropmanagement.Ultrasonicandopticalsensorsarethemostusedforthispurpose.Theobjectiveofthisworkwastoassesstheperformanceofanultrasonicsensorunderlaboratoryandfieldconditionsinordertoprovidereliableestimationsofdistancemeasurementstoappletreecanopies.Tothispurpose,amethodologyhasbeendesignedtoanalyzesensorperformanceinrelationtofoliagerangingandtointerferenceswithadjacentsensorswhenworkingsimultaneously.Resultsshowthattheaverageerrorindistancemeasurementusingtheultrasonicsensorinlaboratoryconditionsis0.53cm.However,theincreaseofvariabilityinfieldconditionsreducestheaccuracyofthiskindofsensorswhenestimatingdistancestocanopies.Theaverageerrorinsuchsituationsis5.11cm.Whenanalyzinginterferencesofadjacentsensors30cmapart,theaverageerroris17.46cm.Whensensorsareseparated60cm,theaverageerroris9.29cm.Theultrasonicsensortestedhasbeenproventobesuitabletoestimatedistancestothecanopyinfieldconditionswhensensorsare60cmapartormoreandcould,therefore,beusedinasystemtoestimatestructuralcanopyparametersinprecisionhorticulture.Keywords:ultrasonicsensor;distancemeasurements;appletreeorchard;ultrasonicinterferences1.IntroductionUltrasonicsensorshavebeenusedformanypurposesinagricultureformorethan40years.Oneoftheseapplicationshasbeenthedetectionandrangingtoextractgeometricinformationfromfruittreecanopies.Thefirstdevelopmentsinthisareawererelatedtotheapplicationofplantprotectionproductssuchaspesticidesandfungicidesinfruitorchards.Oncedosesstartedtobeadjustedaccordingtotheamountofvegetationtobetreated1,2,someresearchersbegantodevelopelectronicsystemstoquantifythegeometricparametersofcanopies.Thefirstproposalstoestimatecanopyvolumeusedseveralultrasonicsensorsmountedinaverticalmast3ormountedonasprayer4drivenbyatractor.However,thestate-of-the-artoftheapplicationtechnologiesdidnotallowthisinformationtobeusedinrealtime.Instead,somesprayerpatents5,6andscientificworks7-10werepublishedmountingultrasonicsensorstoonlydetectthepresenceofcanopyinordertoexclusivelyspraywhenvegetationwasinfrontofthenozzles.Anotherapplicationofultrasonicsensorsistheonedesignedtospraycitruscanopiesataconstantgiven1distance11.Thenozzlesaremountedonamovingarmcontrolledtofollowthecontourofthecanopyaccordingtotheinformationprovidedbyasensor.Inthisworkanaccuracyanalysiscanbefoundwhensensorsareplaced50cmand75cmapart.Theaverageerrorintheircitrusgrovedistancemeasurementsis11.40cm.However,informationisnotprovidedabouttheimportanceoftheeffectofthefoliageontheultrasonicconeortheeffectofinterferencesinsuchanerror.Thesameauthorsdevelopedasprayerabletospraythreedifferentflowratesaccordingtoacanopywidthestimationmadewithanultrasonicsensor12.Therewasnosprayingwhentherewasnovegetation;halftheflowratewassprayedwhenlittlevegetationwasdetectedandthefullflowratewassprayedwhencanopywidthwashigherthanapredefinedthreshold.Thisdesignledthewaytoacontinuousvariationoftheflowrateaccordingtothevariabilityofthevegetationalongfruitorchard,vineyardorcitrusgroverows13-18.Alotofresearchhasbeencarriedouttoautomaticallymeasurecanopydimensionsincitrus.Firstworkswerefocusedoncomparingmanualvolumeestimationswithmeasurementsperformedwithultrasonicandlidarsensors19.Resultsshowedthattheestimationsofultrasonicandlidarsensorscorrelatedfairlywell,whereasthecorrelationwithmanualestimationswaslower.Theauthorsattributedthedifferenceswithmanualmeasurementstothehighersamplingresolutionachievedwiththesensors.Theultrasonicsystemconsistedofamastwith10ultrasonicsensorsperside.Inordertoavoidsignalinterferences,alternatedsensorswerefiredindifferentgroupssequentially.ThissystemwaslaterusedtomapcanopyvolumesincitrusorchardsbyfittingaDGPSreceiver20-22.Theauthorsobservedthatinlessdensetreesbiggerdifferenceswerefoundbetweenmanualandsensorestimations.Theseauthorsusedcanopyvolumeinformationtoadjustthefertilizerdoserate23,24andtoestimatethefruityield.Inrelationtotheverticalsamplingresolution,lidarsensorsprovidemuchmoreinformationthananarrayofultrasonicsensorsresultinginamoreaccurateestimationofcanopyparameters26-29.Anotherapplicationhasbeentheuseofultrasonicallyestimatedcanopyvolumes,togetherwithotherinformation,todefinemanagementzonesincitrusgroves30,31.Sourcesoferrorsinestimatingcanopyvolumesincitruswiththepreviouslydescribedsystemincomparisonwithmanualmeasurementshavealsobeenstudied32.ThemostimportantsourceoferrorintheirsystemwastheinaccuracyoftheDGPSreceiverinestimatinggroundspeedfollowedbytheeffectofairtemperatureonthetimeofflightofsoundwavesand,therefore,onthesensorsdistanceestimation.Alastsourceoferrorwasthedeviationsinthedrivingpath.Nonetheless,noinformationwasprovidedabouttheeffectofcanopystructureonthesensoroutputorotherparameterspotentiallyaffectingthereflectanceoftheultrasonicwaves.Recently,anultrasonicsensorhasbeenstudiedinordertodetermineitsaccuracywhenmeasuringdistancestosimulatedcanopiesoffieldcrops33.Theresultsarepromisingforfieldcropsbutdifficulttoextrapolatetotreecropsduetodifferencesincanopystructurebetweencrops.Mostofthereferencedapplicationsofultrasonicsensorsincanopycharacterizationarefocusedoncorrelatingmanualestimationsofwidthorvolumewiththeresultsobtainedbyusingthesensors.Theseworksdidnotprovideinformationabouttheinteractionbetweenthesoundwaveandthecanopyitselfandhowcanitinterfereintheestimationsofultrasonicsensors.Inrangingapplications,ultrasonicsensorsareintendedtoestimatedistancestoobjectswithsolidsurfacesinordertogetspecularreflectionsoftheacousticwaves.Thesurfaceofanappletreecanopyismadeupofsmallleafsurfacesplacedindifferentorientations.Consequently,thereflectionofultrasonicwavesismore2diffusethanspecularandthiscanstronglyaffectestimateddistances.Inthispaperacommercialultrasonicsensormodelisanalyzedtovalidateitssuitability,performanceandreliabilityinanappleorchardandforabetterunderstandingofthesensingprocess.Trialshavebeenperformedinlaboratoryandfieldconditionsinastationarywayinordertoassessitsabilitytoestimatebothdistancestothecanopyandtheeffectofpossibleinterferencescomingfromotheradjacentsensors.Thisstudyisthefirststepinalargerworkthatwouldusethistypeofsensorstoestimatecanopyparameterssuchascrosssectionareasorcanopyvolumeinfruittreecropsintheframeworkofprecisionhorticulture.2.MaterialsandMethodsOneultrasonicsensorandadataacquisitionsystemwereusedinthelaboratoryandfieldtrials.Thesensorsweremountedonaverticalaluminummastonamobileplatform,whichwasalsousedtocarrytheacquisitionsystemandthebatteriestosupplytherequiredvoltagetoruntheelectronicdevices.2.1.SensorandDataAcquisitionTheultrasonicsensorselectedtocarryoutthetrialsisaSonarBeroPXS400M30K3(SiemensAG,Munich,Germany,Figure1left).Adifferentmodelofthesameserieshasalreadybeenusedinfieldworksincitruswithanincreaseddetectionlimit11.Thesensorisconsideredtoberobustenoughintermsofworkingtemperature(thesensorhasaninternaltemperaturesensortocompensatetheeffectofthisparameterinthedistanceestimation),degreeofprotection,shockandvibrationresistance.Sincerowspacinginfruittreeorchardsisusually5morlessandthesensoristhoughttobeplacedinthecenterofthealleys,thechosensensingrangewasfrom40cmto300cm.However,anysensingrangemodificationresultsindifferencesintheemittedultrasonicconeangle:theshortertherange,thenarrowertheultrasonicconeangle.Duetothisdifferencewiththesensorusedincitrusandthedifferencesinthecropitself,itwasconsideredimportanttoassesstheperformanceofthissensorinanappleorchardbeforebeingusedincanopycharacterization.OtherspecificationsofthesensorcanbefoundinTable1.Theacquisitionsystem(Figure1right)consistsofaPAC(ProgrammableAutomationController)modelcompactFieldPoint(NationalInstruments,Austin,TX,USA).Thisdevicemountsananaloginputmodulewherethesensorsareconnected.ThisdevicecanbeoperatedfromalaptoprunningspecificallydesignedpiecesofsoftwareprogrammedusingLabVIEW(NationalInstruments).Animportantparametertobetakenintoaccountisthebeamangle.Inthespecificationsheetdeliveredtogetherwiththesensor,theinformationprovidedrelatedtothisparameterisasfollows:intheoperatingrange,objectsaresensedreliablywithinasoundconeangleof5.Undergoodreflectionconditions,objectscanalsobesensedoutside.Inamoredetailed3catalog,themanufacturerprovidesinformationabouttheshapeandsizeofthesoundconesdependingontheobjecttobedetected(Figure2).Thetargetsarea1010cmsquaredplaneobjectandan8cmdiametercylindricalobject.Toobtainthesediagrams,thesquaredtargetisplacedbothaligned,withthemostoptimumreflection(Figure2(a),andperpendicularlytotheultrasonicconeaxis(Figure2(c).ThecylindricaltargetconediagramisdescribedinFigure2(b).Anultrasonicconeprojectionwitha5beamanglehasbeensuperimposedtothediagrams.Itisclearthatthetargetitselfanditsrelativepositiontothesensorcangreatlyaffectthedetectionfootprintofthesensor.Ultrasonicsensorsarealsoverysensitivetointerferingsonicwavescomingfromnearbysensors.Themanufacturerofferstwomethodstosynchronizeseveralsensorsinordertoavoidinaccuratereadingsduetointerferencesofsonicechoessentfromanothersensor.However,bothmethodspresentbigdisadvantages.Inonemethodtheobjectcannotbeassignedtoaparticularsensor.Intheother,longerresponsetimesarerequiredbecauseeachsensorisonlyactivebrieflyandthenhastowaituntilalltheothersensorsinthecircuithaveemitted.Thelatter,causesthearrayofsensorsnottoobtain.simultaneousreadings,whatcouldcauseinaccurateestimationsofcross-sectionalareasoftreerows.Thesesolutionscouldbeusefulinastationarysystembutarenotsatisfyingatallwhenthesensorsareboardedinamovingplatform.Inthislastsituation,aminimumdistancebetweenactivesensorsmustbefoundinordertoobtainthehighestverticalresolutiontobetterestimatecanopyparameterswiththeleasteffectofinterferences.2.2.LaboratoryDistanceMeasurementTrialThelaboratorydistancemeasurementtrialwascarriedoutattheCentredeMecanitzaciAgrria(CenterofAgriculturalMechanization)oftheDepartmentofAgriculture,Livestock,Fisheries,FoodandEnvironmentoftheGeneralitatdeCatalunya(CatalanGovernment)inLleida,Catalonia,Spain.Thetrialwasdesignedtoassessthecapabilitiesoftheultrasonicsensorunderidealconditionsusingahard,flat,10cm100cmmetallictarget(biggerthantheminimumdimensionsrecommendedbythemanufacturer).Themobileplatformcarryingthesensorwasstationedandthetargetwasplacedatdifferentknowndistancestothesensor(Figure3).2,000readingswerestoredateachspecificdistancerangingfrom45cmto285cminstepsof15cm.Allmeasurementswereperformedinstationaryandnowindconditions.Thestatisticalanalysisconsistedoffittingalinearregressionmodel(Equation(1)inordertoestablishtheexistenceofafunctionalrelationshipbetweenthedistancetothesensorandthesensoranalogoutput.Ifpossible,aregressionlinewouldbedefinedaccordingtotheleastsquaresmethod.Thequalityofthefittingwasassessedbyanalyzingthemeasureddistancevs.thesensoroutputandthemeasureddistancevs.theresidualscatterdiagramsandbyanalyzingthecoefficientsof4correlation(r)anddetermination(R2),therootmeansquareerror(RMSE)andthesignificanceofthemodel.3.ResultsandDiscussion3.1.LaboratoryDistanceMeasurementTrialThetotalnumberofobservationswas34,000.However,fifteenofthemwereremovedastheywereconsideredoutliers.InTable3itisclearlyseenthatthecorrelationbetweentheoutputsignalofthesensorandthetargetdistanceisverystrong.Thefittedmodelcanexplaina99.9%ofthevariabilityoftheresponse.TheRMSEisverylowandgivesanideaofthegoodfittingofthemodel.Thesignificanceofthefittedmodel,representedbythepvalueoftheanalysisofvarianceofthemodel,isveryhigh.Thepvalueleadstorefusethenullhypothesiswhichassumesthatallparametersareequaltozero.Thereforeitispossibletofindasignificantparameterfortheregressionline(Equation(2).d=297.0726.36v(2)wheredistheestimateddistance,expressedincmandvistheoutputvoltagesignalofthesensor,expressedinV.3.2.FieldTrials3.2.1.DistanceMeasurementTrialTotalnumberofobservationswas168.Tenobservationswereremovedastheywereconsideredabnormalwhencomparedwiththeirequivalentmeasurementtothe10cm2cardboardtarget.InTable4itisseenthatthecorrelationbetweenbothvariablesisstillverystrong.Thefittedmodelcanexplain98%ofthevariabilityofthedistancetothefirstleaf.ThemaindifferencewiththemodelfittedunderlaboratoryconditionsistheRMSE.Whileanartificialplanetargetproducesagoodecho,theincreaseofRMSEinfieldconditionstellsthatvariabilityintheresponseishigher.Eventhough,thefittedmodelisstillhighlysignificant,asstatedbythepvalue.Soitispossibletofindasignificantparameterfortheregressionline(Equation(3).WhencomparingEquations(2)and(3),thedifferencebetweenthetwoparametersisrathersmallwhileinterceptsdiffer2.79cm.Theregressionline,aswellasresultsofthedistancemeasurementlaboratorytrial,isshowninFigure8.Theresidualscatterplotdemonstratesthatthereisnotaclearstructurefortheresidualssowecanacceptthefittedmodel.5d=294.2825.82v(3)wheredistheestimateddistance,expressedincmandvistheoutputvoltagesignalofthesensor,expressedinV.3.2.2.InterferenceTrialAtotalof113observationswerecarriedoutaccordingtothemethodologydescribedinthefluxdiagraminFigure6(b).Adjacentsensorsplacedat30cmand60cmdointerferetheoutputsignalofthecentralsensor,asseeninFigure11.Whenusingsensorsseparated60cm,thefirst100cmarelesssensitivetointerferencesthantherestofthesensingrange,whiletheinterferencescausedbysensors.At30cmaffectallthesensingrange.Ingeneral,thefurtherthecanopy,thebiggertheeffectsprovokedbynearbysensorsare.Theconsequenceofinterferencesisthattheoutputsignalofinterferedsensorsmaysporadicallybehigherthanitshouldbe.Accordingtothefielddistanceestimation(Equation(3)interferenceswouldtendtodecreasethepredicteddistancetothecanopywhichimpliesanoverestimationofitswidth.Inthecaseofusingultrasonicsensorstodeterminethecanopyvolumetoadjustthedoserateofplantprotectionproducts,overestimationofcanopyvolumeswithinterferencesisnotasnegativeasunderestimation.Underestimationscoulddecreasetheefficacyofthetreatmentandcreateresistanceofpesttocertainactiveingredients.4.ConclusionsThetestedultrasonicsensorisabletoaccuratelyestimatedistancesunderlaboratoryconditionswithanaverageerrorof0.53cm.Whenusedunderfieldconditions,thedistanceestimationequationshouldbeadaptedtobetterestimatedistancestothecanopy.However,differenceswiththelaboratoryestimationequationarerelativelysmall,consideringotherpossiblesourcesoferror.Thevariabilityindistanceestimationsinfieldconditionsinanappleorchardclearlyincreasesinrelationtowhatwasobtainedinlaboratorywithartificialtargets.Asaconsequenceofthis,theaverageerroris5.11cm.Theeffectofinterferencesishigherwhensensorsare30cmapartwithanaverageerrorof17.46cm.Whensensorsareseparated60cm,theaverageerroris9.29cm.Sensorsshouldthusbeseparatedmorethan60cminordertoavoidhighinterferenceeffects.Ultrasonicsensorsliketheonetestedandreportedinthispaperhavebeenproventobesuitabletoestimatedistancestothecanopyinfieldconditions.Resultscouldbeextrapolatedtootherapplecropvarietiesandotherspeciessuchaspearcropswherecanopystructuresandleafdimensionsaresimilar.However,ithastobetakenintoaccountthattheincreaseofvariabilityduetothecharacteristics6ofthecanopysurfaceandtheultrasonicworkingprinciplereducestheaccuracyoftheestimationsandthattheeffectofinterferencescanbeimportantwhenadjacentsensorsaretooclose.References1.Morgan,N.G.Gallonsperacreofsprayedareaanalternativestandardtermforthesprayingofplantationcrops.WorldCrop1964,16,64-65.2.Byers,R.E.;Hickey,K.D.;Hill,C.H.Basegallonageperacre.VirginiaFruit1971,60,19-23.3.McConnell,R.L.;Elliot,K.C.;Blizzard,S.H.;Koster,K.H.Electronicmeasurementoftreerowvolume.Agr.Electron.1983,1,85-90.4.Giles,D.K.;Delwiche,M.J.;Dodd,R.B.Electronicmeasurementoftreecanopyvolume.Trans.ASABE1988,31,264-272.5.Roper,B.E.GroveSprayer.U.S.Patent4,768,713,6September1988.6.Giles,D.K.;Delwiche,M.J.;Dodd,R.B.MethodandApparatusforTargetPlantFoliageSensingandMappingandRelatedMaterialsApplicationControl.U.S.Patent4,823,268,18April1989.7.Giles,D.K.;Delwiche,M.J.;Dodd,R.B.Controloforchardsprayingbasedonelectronicsensingoftargetcharacteristics.Trans.ASABE1987,30,1624-1630,1636.8.Giles,D.K.;Delwiche,M.J.;Dodd,R.B.Sprayercontrolbysensingorchardcropcharacteristics:Orchardarchitectureandsprayliquidsavings.J.Agr.Eng.Res.1989,43,271-289.9.Balsari,P.;Tamagnone,M.Anautomaticspraycontrolforairblastsprayers:Firstresults.InPreciscionAgriculture97;InProceedingsofthe1stEuropeanConferenceonPrecisionAgriculture,Warwick,UK,September1997;Stafford,J.V.,Ed.;BIOSScientificPublishersLtd.:Oxford,UK,1997;pp.619-626.10.Brown,D.L.;Giles,D.K.;Oliver,M.N.;Klassen,P.Targetedspraytechnologytoreducepesticideinrunofffromdormantorchards.CropProt.2008,27,545-552.11.Molt,E.;Martn,B.;Gutirrez,A.Designandtestingofanautomaticmachineforsprayingataconstantdistancefromthetreecanopy.J.Agr.Eng.Res.2000,77,379-384.7中文翻译稿在苹果树冠的超声波测距传感器的性能摘要:电子树冠特征是林木管理的一个重要课题。超声和光学传感器是最常用的用于此目的。这项工作的目的是评估,以提供距离测量的可靠估计到苹果树檐实验室和现场条件下的超声波传感器的性能。为此目的,一种方法已被设计来分析相对于传感器性能叶面同时工作时测距和对干扰与相邻的传感器。结果表明,使用了超声波传感器在实验室条件下在距离测量的平均误差是0.53公分。然而,变异性的现场条件的增加估计的距离来篷时减少这种传感器的精度。在这种情况下的平均误差为5.11厘米。在分析相邻传感器的干扰30厘米分开,平均误差为17.46厘米。当传感器被隔开60厘米,平均误差为9.29厘米。超声波传感器检测已被证明是合适的估计的距离,以在现场条件篷当传感器60厘米外或多个和可能,因此,可以使用在一个系统来估计园艺结构参数精度。关键词:超声波传感器;距离测量;苹果树果园;超声波干扰1.简介超声波传感器已被用于许多目的的农业超过40年。这些应用一直是用在探测和测距提取果树檐几何信息。在这一领域的第一个发展均与植物保护产品如杀虫剂和杀真菌剂在果园中的应用有关。一旦剂量开始,根据植物的待处理量1,2进行调整,一些研究人员开始发展的电子系统来量化檐的几何参数。第一方案来估计树冠量使用安装在垂直桅杆3或安装在喷雾器几个超声波传感器4驱动拖拉机。然而,先进设备,先进的应用技术并没有让实时使用这些信息。相反,一些喷雾器专利5,6和科学著作7-10发表安装超声波传感器只检测以便喷洒时植物是在喷嘴的前方篷存在。超声波传感器的另一个应用是一个设计成喷柑桔檐以恒定给定的距离11。喷嘴被安装在一移动臂控制根据由传感器提供的信息来遵循篷的轮廓。在这项工作中的精度分析可以发现,传感器需被放置50厘米和75厘米外。在他们的柑橘林中距离测量平均误差为11.40厘米。然而,在没有提供关于枝叶上的超声波锥体或干扰的情况下,这样的错误是影响效果的重要信息。作者同时开发能够根据与超声波传感器12制成篷宽度估计以三个不同流率的喷雾器。喷洒在没有植被;一半的流速喷洒,检测小植被时和充分流速喷雾时篷宽度比预定阈值高。根据果园,葡8萄园或柑桔林行13-18的植被的变异,这种设计导致的方式上流量的连续变化。大量的研究已经进行了自动测量柑橘树冠尺寸。第一个作品都集中在比较手动量估计与超声波和激光雷达传感器19进行的测量。结果表明,超声波和激光雷达传感器估计相关还算不错,而采用手动估计的相关性较低。笔者归结差异与手工测量有关,以实现与传感器更高的采样分辨率。超声波系统包括桅杆的每面10的超声波传感器。为了避免信号干扰,传感器交替依次发射了不同的组。这个系统后来被拟合DGPS接收机20-22映射在柑橘园树冠体积。笔者观察到,在密度较小的树木手动和传感器之间的估算发现更大的差异。这些差异作者使用树冠量信息来调整肥料剂量率23,24,并以估计的果实产量。相对于垂直采样分辨率,激光雷达传感器提供比导致冠层参数26-29的更准确的估计的超声波传感器阵列更多的信息。另一个应用程序已使用超声估计树冠体积,与其他信息一起,在柑橘园30,31定义的管理区。在估计篷卷柑桔与先前描述的系统与手动测量比较错误的来源也进行了研究32。在他们的系统误差的最重要来源是DGPS接收机估计地面速度,随后空气温度对声波的速度,因此,在传感器距离估计的时间的影响是不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论