




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ACOMPARATIVESTUDYOFHOUGHTRANSFORMMETHODSFORCIRCLEFINDINGH.K.Yuen,J.Princen,J.IllingworthandJ.KittlerDepartmentofElectronicsandElectricalEngineeringUniversityofSurrey,Guildford,GU25XH.U.K.TheobjectiveofthispaperistoinvestigateanumberofcircledetectionmethodswhicharebasedonvariationsoftheHoughTransform.Themethodsconsideredin-cludethestandardHoughTransform,theFastHoughTransformofLietal,twospacesavingapproacheswhicharebusedonthosedevisedbyGerigandKleinandatwo-stagemethod.Weexperimentallycomparetheperfor-manceofthemethodsandillustratepropertiessuchasaccuracy,reliability,computationalefficiencyandstor-agerequirements.Inrecentyears,severalmethodsofcirclefindingbasedontheHoughTransform(HT)havebeenproposed1,2aswellassomegeneraltechniquesforfastimplementa-tionoftheHT3,4.Invariablythesemethodsclaimtoimproveefficiency,storageorreliabilitythoughinmostcasesthecomparisonsmadewithothertechniquesaresuperficial.Wefeelthatthisisabouttherighttimetoputanumberofthesealgorithmstogetherandexaminetheirpropertiesinmoredetail.Thestudyisexperi-mentalandweconsiderbothrealandsyntheticimages.OurresultsshowthatmoresophisticatedvariationsoftheHTmethoddonotnecessarilyout-performstraight-forwardapproaches.Thepaperisorganisedasfollows.InthenextsectionweintroducethecirclefindingproblemandthebasicideaunderlyingtheHT.Thisisfollowedbyabriefdescrip-tionofeachofthefiveHTbasedmethodsconsideredinourstudy.Theexperimentalevaluationofeachmethodisthengivenandthefinalsectionpresentstheconclu-sionsofourwork.CIRCLEFINDINGUSINGTHEHTIfacircleintheimageisdescribedas(1)where(a,6)arethecoordinateofthecirclecenterandrisitsradius,thenanarbitraryedgepoint(i,y,)willbetransformedintoarightcircularconeinthe(a,6,r)parameterspace5.Ifalltheimagepointslieonacirclethentheconeswillintersectatasinglepointin(a,6,r)correspondingtotheparametersofthecircle.Kimmeetal6giveprobablythefirstknownapplicationoftheHoughTransformtodetectingcirclesinrealimages.Intheirwork,theyhavemadeuseofthedirectionofthegradientateachedgepoint.Thecentreofacirclemustlieonthenormalattheedgepoint.Asaresultinsteadofincrementingthewholecircularcone,onlysegmentsoftheconeneedbeincremented.Thesizetheregionwhichisincrementeddependsontheaccuracyoftheedgedirectionestimation.AnimportantpartofthecompleteHTprocessispeakdetection.Anextremelyusefultechniquewhichwehavefoundeasesthepeakfindingproblemconsiderablyisthepost-processingmethodproposedbyGerigandKlein1.Itconsistsofaseconddaapasswhichtakeseachedgepointandidentifiesthemaximumvalueintheac-cumulatorarrayoutofallparametervaluesvotedforbythepoint.Theedgepointislabelledwiththislocation.Inallthemethodsconsidered,thistechniqueisusedtodetectthefinalpeaks.Wereferthereaderto7,10fordetails.THESTANDARDHTTheStandardHoughTransform(SHT)inthisstudyfollowsthebasicideaoutlinedintheprevioussection.A3-Daccumulatorarrayisemployedandedgedirec-tioninformationisusedtolimitvotingtoasectionofthecone.Inanidealsituation,thecentreofthecirclemustlieonalineorientednormaltotheedgedirection.Thereforeweonlyhavetomovealongthenormalofev-eryedgepointtofindthepossiblelocationsofcenters.Thedistancebetweeneachedgepointandtheestimatedcenterisacandidateforradiusofthecorrespondingcir-cle.However,inpractice,theedgedirectionisusuallyestimatedinaccurately.Asaresult,thedetectionofthetruelocalmaximumintheaccumulatorarraycouldbedifficultifthissimpleaccumulationstrategyisused.IfthedirectionerrorisknowntobewithinarangeofA(,thenwemaysaythatthecenterofthecircleforthepoint(xinthethreedimensionalHoughspaceconsistsoftwoorthogonalstraightlinespointingoutwardfromthepoint(a:,-,t/j,O).Todeter-minewhetherahypercubehasbeenintersectedbyoneofthesetwolines,wecomparetheperpendiculardis-tancefromthecenterofthehypercubetothelineswiththediagonallengthofthehypercube.Iftheformerisshorter,thehypercubewillreceiveonevote.UnliketheoriginalFHT,thereisnoincrementalupdatingfortheintersectiontest.Inordertoimprovetheefficiencyofthealgorithm,wehavedevelopedaschemetochooseasuitablethresh-oldvalueadaptivelybasedontherangeofradiusbeingsearchedandatthesametime,reducethesearchingrangeofradius10.Theresultspresentedarebasedonthisstrategy.EXPERIMENTALCOMPARISONTherearemanycriteriawhichcanbeconsideredinanycomparisonofalgorithmsbutinourstudythemostim-portantpointsrelatetotheaccuracy,robustness,com-putationalcomplexityandstorage.Theaccuracyismeasuredbycomparingtheabsoluteerrorsofthees-timatedradiiandcentercoordinatestothetruevaluesofcirclesinsyntheticimages.Wepresentatypicalex-ampleusinganimageconsistingof19randomlygener-atedcircles.Totestthedetectioncapabilitiesofeachalgorithm,arealimageconsistingofabout76circlesofvariousradii,countedsubjectively,isexamined.Thenumberofmissingandfalsecirclesarecountedforeachalgorithm.Toestimatecomputationalefficiencyweusethetimetakentoruneachalgorithmonour/iVAX-2computer.Werealisethatasameasureofefficiencythisisnotnecessarilyofgeneralsignificance.Howeverallal-gorithms,excepttheFastHoughTransform,areverysimilarandthereforeatleastinacoarsesensewewouldexpecttheconclusionsregardingefficiencytohold.The170majortimeconsumptionforeachalgorithmoccursfortransformaccumulationandtheimplementationoftheGerigandKleinpost-processing.The2stagemethodalsoexpendsasignificanttimefortheradiushistogramstep.Thestoragerequirementsforeachmethodaredominatedbytheaccumulatorarray(s).NotethatallthealgorithmswerecodedinPASCAL.Figures1and2showtheedgesofthesyntheticandrealimages.TheedgepointsineachimageareidentifiedusingamethodbasedontheCannyedgedetector9followedbybinarythinningoftheresultantthresholdededgemap.TheedgedirectionofthesyntheticimageissmearedbyaUniformdistributednoiseintherange5,5.ThissmearingdoesnotaffecttheperformanceoftheGKHTmethodasedgedirectionisnotused.Fortheothermethods,threedifferenterrorbounds,0,5and10,areassumedforedgedirectionaccuracy.Fig-ure3showsthecorrespondingmeansoftheabsoluteerrorofthethreeparameters.ItisinterestingtonotethattheGKHTmethodachievedazeroerrorforthera-diusparameterwithoutusingthegradient.The21HTmethodisverysensitivetotheassumptionofvalueoftheerrorbound.Itachievesverysmallerrorsfortheparametersattheerrorboundof5.TheresultfortheMFHTattheerrorboundof0isverygoodbuttheresultatthe10isnotavailableduetothelargestor-agerequirement.ThemeansofabsoluteerroroftheSHTmethodaregenerallylargerthanthosefromothermethods.TheresultoftheGHTGisgoodinmostcasesandthemeansremainstableastheassumptionoftheerrorboundincreases.Itisdifficulttochoosethebestmethodbasedonthissingleexample.However,basedontheresultsfromotherexperiments10,the21HTandGHTGmethodsseemtobemoreaccuratethantheothers.Table1showsforthesyntheticimagethenumberofmissingandfalsecirclesfoundbyeachalgorithmatdif-ferentassumededgedirectionerrorbounds.ThebestperformanceinthiscaseisobtainedwiththeGHTGmethodwhichonlymissed2and1circlesattheerrorboundsof0and5respectivelyanddetectedallthe19circlesusingtheerrorboundof10,seefigure4.Wefoundthatusingthe2stagemethod,errorsinthefirststagecausedproblemsinthesecondstagehis-togram.Itcanbeshownthatifthemagnitudeofthecentreerrorisgreaterthanthehistogramcellwidthasinglecirclewillproducetwopeaksintheradialhistogram10.Thepeaksaresymmetricallylocatedaroundthetrueradiusandthedistancebetweenthemdependsonthecentreerror.Thismakesconcentriccir-clesdifficulttodistinguishfromdoublepeaksduetocentreerrors.ThemoststrikingobservationconcerningtheMFHTisthatitexhauststheavailablestorageoftheVAXma-chineinthecaseof10errorboundandthereforetheresultisnotavailable.ThisproblemrelatestothelargenumberofphantompeakswhichtheMFHTinvestigatesbeforediscoveringthecorrectones.Thealgorithmper-formsreasonablywellintermsofefficiency,accuracyandreliabilityusingtheothererrorbounds.Figure5showstheCPUtimeforthealgorithms.Inthiscase,theperformanceofthe21HT,GHTGandSHTareveryclosetoeachother.AsexpectedtheGKHTwhichdoesnotusegradientdirectiontakessignificantlylongerthanGHTG.Thecomparativestudywouldnotbecompletewithoutapplyingthealgorithmstorealimages.Figure6givestherunningtimeofthealgorithmsontherealimageshowninfigure2.Theerrorboundisassumedtobe5fortheMFHTmethod(becauseofstorageproblemmentionedpreviously)and10forthe21HT,GHTGandSHTmethods.Thetimetakenbythealgorithms21HT,GHTGandSHTareveryclosetoeachother.Howeveroncountingthemissingandfalsecircles,asshownintable2,theGHTGout-performsalltheothermethodswithonly3circlesmissingoutof76.Thereare,however,10falsecirclesdetectedbythealgorithm.Allofthemareverysmallcircleswithradius1or2.Thesefalsecirclesarefoundfrombadlydetectededgepointswhichareinfacttruecircleswithverylowgreylevelintheoriginalimage.Figure7showstheresultofcirclefindingusingtheGHTGmethod.Inmostmethods,thestoragerequirementsdependdi-rectlyontheparameterrangesandthequantizationofeachparameteraxis.Wehaveused2562imagesandonlydetectcirclecentreswhichlieinsidetheimage,henceaand6arewithin(0,256).Theradiuswaslim-itedtoliebetween(1,35).Eachaxiswasdividedinto1unitcells.Consideringthestoragerequirementsofeachofthe5algorithms,asshownintable3weseethatthe21HTmethodhasaclearadvantageovertheothers.TheGKHTandGHTGarethesecondbest.Thestor-agerequirementoftheMFHTisratherunpredictable.Itwilldependonthecomplexityoftheimage,choiceofthresholdvalueandtheerrorboundassumption.CONCLUSIONSTheresultsofourstudyindicatethatboththeGKHTandMFHTexperienceseveredifficultiesifappliedtocompleximages.ThemainproblemoftheGKHTistheunreliabilityandlowefficiencyduetothefactthatedgedirectioninformationisnotincorporatedinthemethod.TheMFHTsuffersfromtheunpredictablestorageandcomputationalrequirement,andhasthemostcompli-catedprogrammingstructureincomparisonwiththeothermethods.Nevertheless,bothmethodsmaystillbeusefuliftheyareappliedtosimpleimageswithverylownoise.Ithasbeenshownthattheperformanceofthe21HT,GHTGandSHTareveryclosetoeachother.Themain171drawbackfortheSHTisthelargestoragerequirementforimagesconsistingofcirclesofdifferentsizes.Al-thoughtheGHTGisrestrictedtonon-concentriccir-cles,wehavefound,fromotherexperimentalresults10,thattheGHTGgenerallypeformsbetterthanthe21HTmethodinthesenseofrobustness.Thisisduetothefactthatthe21HTisa2stagemethodandanyerroroccurringinthefirststageofcenterfindingwillcausedifficultiesinthepeakfindingofthesecondradiusfind-ingstage.ACKNOWLEDGEMENTSThisworkwascarriedoutaspartofALVEYcontractMMI/078,acollaborativeprojectinvolvingSurreyUni-versity,Heriot-WattUniversityandComputerRecogni-tionSystemsofWokingham.REFERENCES1.GerigG.andKleinF.FastcontouridentificationthroughefficientHoughTransformandsimplifiedinter-pretationstrategy,8thIJCPR,Paris,pp498-500,1986.2.DaviesE.R.AmodifiedHoughschemeforgeneralcirclelocation,PatternRecognitionLetters,vol7,no.1,pp37-44,1988.3.IllingworthJ.andKittlerJ.TheadaptiveHoughTransform,IEEETrans.PatternAnalysis&MachineIntelligence,vol9,no.5,pp690-697,1987.4.LiH.,LavinM.A.andLeMasterR.J.FastHoughTransform:Ahierarchicalapproach,CVGIP,36,pp139-161,1986.5.DudaR.O.andHartP.E.UseoftheHoughTransformationtodetectlinesandcurvesinpictures,Comm.oftheACM,vol15,no.1,pp11-15,1972.6.KimmeC,BallardD.andSklanskyJ.Findcirclesbyanarrayofaccumulators,Comm.oftheACM,vol18,no.2,pp120-122,1975.7.PrincenJ.,YuenH.K.,IllingworthJ.andKit-tierJ.AcomparativestudyofHoughTransformAl-gorithms:PartI-Linedetectionmethods,DepartmentofElectronicandElectricalEngineering,UniversityofSurrey,U.K.8.IllingworthJ.,KittlerJ.andPrincenJ.ShapedetectionusingtheAdaptiveHoughTransform,inPro-ceedings,NATOAdvancedResearchWorkshoponReal-TimeObjectandEnvironmentMeasurementandClas-sification,Maratea,Italy,September1987,Springer-Verlag,NewYork/Berlin.9.CannyJ.Acomputationalapproachtoedgede-tection,IEEETrans.PatternAnalys
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年三四线城市房地产税收政策与风险控制报告
- 药品购销信用管理制度
- 药品顾客投诉管理制度
- 药店医疗废物管理制度
- 药店药品归置管理制度
- 营业网点加班管理制度
- 设备使用维修管理制度
- 设备培训考核管理制度
- 设备技术文件管理制度
- 设备检修提级管理制度
- 公司职业病危害防治责任制度
- 第十八章:爬行纲课件
- 米亚罗-孟屯河谷风景名胜区旅游基础设施建设项目环评报告
- 滁州市第一人民医院医疗暂存间环保设施提升改造项目环境影响报告表
- 籍贯对照表完整版
- 警用无人机考试题库(全真题库)
- 中等职业学校英语课程标准(2020年版)(word精排版)
- 高边坡作业安全专项施工方案与高边坡安全专项施工方案汇编
- 医保业务知识题库
- 等级医院评审中应注意的迎评礼仪
- 吉林省长春市东北师大附中明珠学校2023年物理八年级第二学期期末统考模拟试题含解析
评论
0/150
提交评论