




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ACOMPARATIVESTUDYOFHOUGHTRANSFORMMETHODSFORCIRCLEFINDINGH.K.Yuen,J.Princen,J.IllingworthandJ.KittlerDepartmentofElectronicsandElectricalEngineeringUniversityofSurrey,Guildford,GU25XH.U.K.TheobjectiveofthispaperistoinvestigateanumberofcircledetectionmethodswhicharebasedonvariationsoftheHoughTransform.Themethodsconsideredin-cludethestandardHoughTransform,theFastHoughTransformofLietal,twospacesavingapproacheswhicharebusedonthosedevisedbyGerigandKleinandatwo-stagemethod.Weexperimentallycomparetheperfor-manceofthemethodsandillustratepropertiessuchasaccuracy,reliability,computationalefficiencyandstor-agerequirements.Inrecentyears,severalmethodsofcirclefindingbasedontheHoughTransform(HT)havebeenproposed1,2aswellassomegeneraltechniquesforfastimplementa-tionoftheHT3,4.Invariablythesemethodsclaimtoimproveefficiency,storageorreliabilitythoughinmostcasesthecomparisonsmadewithothertechniquesaresuperficial.Wefeelthatthisisabouttherighttimetoputanumberofthesealgorithmstogetherandexaminetheirpropertiesinmoredetail.Thestudyisexperi-mentalandweconsiderbothrealandsyntheticimages.OurresultsshowthatmoresophisticatedvariationsoftheHTmethoddonotnecessarilyout-performstraight-forwardapproaches.Thepaperisorganisedasfollows.InthenextsectionweintroducethecirclefindingproblemandthebasicideaunderlyingtheHT.Thisisfollowedbyabriefdescrip-tionofeachofthefiveHTbasedmethodsconsideredinourstudy.Theexperimentalevaluationofeachmethodisthengivenandthefinalsectionpresentstheconclu-sionsofourwork.CIRCLEFINDINGUSINGTHEHTIfacircleintheimageisdescribedas(1)where(a,6)arethecoordinateofthecirclecenterandrisitsradius,thenanarbitraryedgepoint(i,y,)willbetransformedintoarightcircularconeinthe(a,6,r)parameterspace5.Ifalltheimagepointslieonacirclethentheconeswillintersectatasinglepointin(a,6,r)correspondingtotheparametersofthecircle.Kimmeetal6giveprobablythefirstknownapplicationoftheHoughTransformtodetectingcirclesinrealimages.Intheirwork,theyhavemadeuseofthedirectionofthegradientateachedgepoint.Thecentreofacirclemustlieonthenormalattheedgepoint.Asaresultinsteadofincrementingthewholecircularcone,onlysegmentsoftheconeneedbeincremented.Thesizetheregionwhichisincrementeddependsontheaccuracyoftheedgedirectionestimation.AnimportantpartofthecompleteHTprocessispeakdetection.Anextremelyusefultechniquewhichwehavefoundeasesthepeakfindingproblemconsiderablyisthepost-processingmethodproposedbyGerigandKlein1.Itconsistsofaseconddaapasswhichtakeseachedgepointandidentifiesthemaximumvalueintheac-cumulatorarrayoutofallparametervaluesvotedforbythepoint.Theedgepointislabelledwiththislocation.Inallthemethodsconsidered,thistechniqueisusedtodetectthefinalpeaks.Wereferthereaderto7,10fordetails.THESTANDARDHTTheStandardHoughTransform(SHT)inthisstudyfollowsthebasicideaoutlinedintheprevioussection.A3-Daccumulatorarrayisemployedandedgedirec-tioninformationisusedtolimitvotingtoasectionofthecone.Inanidealsituation,thecentreofthecirclemustlieonalineorientednormaltotheedgedirection.Thereforeweonlyhavetomovealongthenormalofev-eryedgepointtofindthepossiblelocationsofcenters.Thedistancebetweeneachedgepointandtheestimatedcenterisacandidateforradiusofthecorrespondingcir-cle.However,inpractice,theedgedirectionisusuallyestimatedinaccurately.Asaresult,thedetectionofthetruelocalmaximumintheaccumulatorarraycouldbedifficultifthissimpleaccumulationstrategyisused.IfthedirectionerrorisknowntobewithinarangeofA(,thenwemaysaythatthecenterofthecircleforthepoint(xinthethreedimensionalHoughspaceconsistsoftwoorthogonalstraightlinespointingoutwardfromthepoint(a:,-,t/j,O).Todeter-minewhetherahypercubehasbeenintersectedbyoneofthesetwolines,wecomparetheperpendiculardis-tancefromthecenterofthehypercubetothelineswiththediagonallengthofthehypercube.Iftheformerisshorter,thehypercubewillreceiveonevote.UnliketheoriginalFHT,thereisnoincrementalupdatingfortheintersectiontest.Inordertoimprovetheefficiencyofthealgorithm,wehavedevelopedaschemetochooseasuitablethresh-oldvalueadaptivelybasedontherangeofradiusbeingsearchedandatthesametime,reducethesearchingrangeofradius10.Theresultspresentedarebasedonthisstrategy.EXPERIMENTALCOMPARISONTherearemanycriteriawhichcanbeconsideredinanycomparisonofalgorithmsbutinourstudythemostim-portantpointsrelatetotheaccuracy,robustness,com-putationalcomplexityandstorage.Theaccuracyismeasuredbycomparingtheabsoluteerrorsofthees-timatedradiiandcentercoordinatestothetruevaluesofcirclesinsyntheticimages.Wepresentatypicalex-ampleusinganimageconsistingof19randomlygener-atedcircles.Totestthedetectioncapabilitiesofeachalgorithm,arealimageconsistingofabout76circlesofvariousradii,countedsubjectively,isexamined.Thenumberofmissingandfalsecirclesarecountedforeachalgorithm.Toestimatecomputationalefficiencyweusethetimetakentoruneachalgorithmonour/iVAX-2computer.Werealisethatasameasureofefficiencythisisnotnecessarilyofgeneralsignificance.Howeverallal-gorithms,excepttheFastHoughTransform,areverysimilarandthereforeatleastinacoarsesensewewouldexpecttheconclusionsregardingefficiencytohold.The170majortimeconsumptionforeachalgorithmoccursfortransformaccumulationandtheimplementationoftheGerigandKleinpost-processing.The2stagemethodalsoexpendsasignificanttimefortheradiushistogramstep.Thestoragerequirementsforeachmethodaredominatedbytheaccumulatorarray(s).NotethatallthealgorithmswerecodedinPASCAL.Figures1and2showtheedgesofthesyntheticandrealimages.TheedgepointsineachimageareidentifiedusingamethodbasedontheCannyedgedetector9followedbybinarythinningoftheresultantthresholdededgemap.TheedgedirectionofthesyntheticimageissmearedbyaUniformdistributednoiseintherange5,5.ThissmearingdoesnotaffecttheperformanceoftheGKHTmethodasedgedirectionisnotused.Fortheothermethods,threedifferenterrorbounds,0,5and10,areassumedforedgedirectionaccuracy.Fig-ure3showsthecorrespondingmeansoftheabsoluteerrorofthethreeparameters.ItisinterestingtonotethattheGKHTmethodachievedazeroerrorforthera-diusparameterwithoutusingthegradient.The21HTmethodisverysensitivetotheassumptionofvalueoftheerrorbound.Itachievesverysmallerrorsfortheparametersattheerrorboundof5.TheresultfortheMFHTattheerrorboundof0isverygoodbuttheresultatthe10isnotavailableduetothelargestor-agerequirement.ThemeansofabsoluteerroroftheSHTmethodaregenerallylargerthanthosefromothermethods.TheresultoftheGHTGisgoodinmostcasesandthemeansremainstableastheassumptionoftheerrorboundincreases.Itisdifficulttochoosethebestmethodbasedonthissingleexample.However,basedontheresultsfromotherexperiments10,the21HTandGHTGmethodsseemtobemoreaccuratethantheothers.Table1showsforthesyntheticimagethenumberofmissingandfalsecirclesfoundbyeachalgorithmatdif-ferentassumededgedirectionerrorbounds.ThebestperformanceinthiscaseisobtainedwiththeGHTGmethodwhichonlymissed2and1circlesattheerrorboundsof0and5respectivelyanddetectedallthe19circlesusingtheerrorboundof10,seefigure4.Wefoundthatusingthe2stagemethod,errorsinthefirststagecausedproblemsinthesecondstagehis-togram.Itcanbeshownthatifthemagnitudeofthecentreerrorisgreaterthanthehistogramcellwidthasinglecirclewillproducetwopeaksintheradialhistogram10.Thepeaksaresymmetricallylocatedaroundthetrueradiusandthedistancebetweenthemdependsonthecentreerror.Thismakesconcentriccir-clesdifficulttodistinguishfromdoublepeaksduetocentreerrors.ThemoststrikingobservationconcerningtheMFHTisthatitexhauststheavailablestorageoftheVAXma-chineinthecaseof10errorboundandthereforetheresultisnotavailable.ThisproblemrelatestothelargenumberofphantompeakswhichtheMFHTinvestigatesbeforediscoveringthecorrectones.Thealgorithmper-formsreasonablywellintermsofefficiency,accuracyandreliabilityusingtheothererrorbounds.Figure5showstheCPUtimeforthealgorithms.Inthiscase,theperformanceofthe21HT,GHTGandSHTareveryclosetoeachother.AsexpectedtheGKHTwhichdoesnotusegradientdirectiontakessignificantlylongerthanGHTG.Thecomparativestudywouldnotbecompletewithoutapplyingthealgorithmstorealimages.Figure6givestherunningtimeofthealgorithmsontherealimageshowninfigure2.Theerrorboundisassumedtobe5fortheMFHTmethod(becauseofstorageproblemmentionedpreviously)and10forthe21HT,GHTGandSHTmethods.Thetimetakenbythealgorithms21HT,GHTGandSHTareveryclosetoeachother.Howeveroncountingthemissingandfalsecircles,asshownintable2,theGHTGout-performsalltheothermethodswithonly3circlesmissingoutof76.Thereare,however,10falsecirclesdetectedbythealgorithm.Allofthemareverysmallcircleswithradius1or2.Thesefalsecirclesarefoundfrombadlydetectededgepointswhichareinfacttruecircleswithverylowgreylevelintheoriginalimage.Figure7showstheresultofcirclefindingusingtheGHTGmethod.Inmostmethods,thestoragerequirementsdependdi-rectlyontheparameterrangesandthequantizationofeachparameteraxis.Wehaveused2562imagesandonlydetectcirclecentreswhichlieinsidetheimage,henceaand6arewithin(0,256).Theradiuswaslim-itedtoliebetween(1,35).Eachaxiswasdividedinto1unitcells.Consideringthestoragerequirementsofeachofthe5algorithms,asshownintable3weseethatthe21HTmethodhasaclearadvantageovertheothers.TheGKHTandGHTGarethesecondbest.Thestor-agerequirementoftheMFHTisratherunpredictable.Itwilldependonthecomplexityoftheimage,choiceofthresholdvalueandtheerrorboundassumption.CONCLUSIONSTheresultsofourstudyindicatethatboththeGKHTandMFHTexperienceseveredifficultiesifappliedtocompleximages.ThemainproblemoftheGKHTistheunreliabilityandlowefficiencyduetothefactthatedgedirectioninformationisnotincorporatedinthemethod.TheMFHTsuffersfromtheunpredictablestorageandcomputationalrequirement,andhasthemostcompli-catedprogrammingstructureincomparisonwiththeothermethods.Nevertheless,bothmethodsmaystillbeusefuliftheyareappliedtosimpleimageswithverylownoise.Ithasbeenshownthattheperformanceofthe21HT,GHTGandSHTareveryclosetoeachother.Themain171drawbackfortheSHTisthelargestoragerequirementforimagesconsistingofcirclesofdifferentsizes.Al-thoughtheGHTGisrestrictedtonon-concentriccir-cles,wehavefound,fromotherexperimentalresults10,thattheGHTGgenerallypeformsbetterthanthe21HTmethodinthesenseofrobustness.Thisisduetothefactthatthe21HTisa2stagemethodandanyerroroccurringinthefirststageofcenterfindingwillcausedifficultiesinthepeakfindingofthesecondradiusfind-ingstage.ACKNOWLEDGEMENTSThisworkwascarriedoutaspartofALVEYcontractMMI/078,acollaborativeprojectinvolvingSurreyUni-versity,Heriot-WattUniversityandComputerRecogni-tionSystemsofWokingham.REFERENCES1.GerigG.andKleinF.FastcontouridentificationthroughefficientHoughTransformandsimplifiedinter-pretationstrategy,8thIJCPR,Paris,pp498-500,1986.2.DaviesE.R.AmodifiedHoughschemeforgeneralcirclelocation,PatternRecognitionLetters,vol7,no.1,pp37-44,1988.3.IllingworthJ.andKittlerJ.TheadaptiveHoughTransform,IEEETrans.PatternAnalysis&MachineIntelligence,vol9,no.5,pp690-697,1987.4.LiH.,LavinM.A.andLeMasterR.J.FastHoughTransform:Ahierarchicalapproach,CVGIP,36,pp139-161,1986.5.DudaR.O.andHartP.E.UseoftheHoughTransformationtodetectlinesandcurvesinpictures,Comm.oftheACM,vol15,no.1,pp11-15,1972.6.KimmeC,BallardD.andSklanskyJ.Findcirclesbyanarrayofaccumulators,Comm.oftheACM,vol18,no.2,pp120-122,1975.7.PrincenJ.,YuenH.K.,IllingworthJ.andKit-tierJ.AcomparativestudyofHoughTransformAl-gorithms:PartI-Linedetectionmethods,DepartmentofElectronicandElectricalEngineering,UniversityofSurrey,U.K.8.IllingworthJ.,KittlerJ.andPrincenJ.ShapedetectionusingtheAdaptiveHoughTransform,inPro-ceedings,NATOAdvancedResearchWorkshoponReal-TimeObjectandEnvironmentMeasurementandClas-sification,Maratea,Italy,September1987,Springer-Verlag,NewYork/Berlin.9.CannyJ.Acomputationalapproachtoedgede-tection,IEEETrans.PatternAnalys
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届黑龙江省鸡西虎林市东方红林业局化学高一上期中统考试题含解析
- 干部档案专项审核课件
- 干弱电基础知识培训课件
- 2026届营口市重点中学化学高二第一学期期中质量检测模拟试题含解析
- 常用除草剂的使用课件
- 带钢厂消防安全知识培训课件
- 河南省洛阳市宜阳县2024-2025学年七年级下学期期末考试数学试卷(含答案)
- 2024-2025学年广西南宁市兴宁二中七年级(下)月考数学试卷(5月份)(含答案)
- 2026届上海市南汇一中化学高一上期末教学质量检测试题含解析
- 2026届安徽省阜阳市颍上二中化学高一上期末统考试题含解析
- 建筑工程安全管理提升方案
- 肩关节脱位-课件
- 对新员工保密基本培训
- 2025届湖北省部分学校新高三新起点暑期效果联合质量检测数学试卷(解析版)
- GB/T 6553-2024严酷环境条件下使用的电气绝缘材料评定耐电痕化和蚀损的试验方法
- 2024年苏教版四年级数学上册全册教案
- 2024新科普版英语七年级上单词默写表
- 金融行业高质量发展专题研究报告
- 2024年首届全国“红旗杯”班组长大赛考试题库(单选、多选、判断题)
- 知识题库-人社练兵比武竞赛测试题及答案(五)
- 五年级上册科学青岛版全册教案
评论
0/150
提交评论