




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
EventDetectionandLocationinElectricPowerSystemsusingConstrainedOptimizationMichaelJ.Smith,KevinWedewardStudentMember,IEEE,Albuquerque,NMDepartmentofElectricalEngineeringNewMexicoInstituteofMiningandTechnology,Socorro,NM87801AbstractOnlinemonitoringanddiagnosticsareimportantfunctionsintheoperationandmaintenanceofelectricpowersystems.Inthispreliminarypaperwepresenttwonewmethodsforelectricpowergridstateandparameterestimationwhenalimitedamountofgridinformationisavailable.Themethodsarebasedondevelopingaconstrainedoptimizationproblemwhosesolutionprovidesasetofdesiredgridinformation.Thefirstmethodattemptstoestimateanapproximatestateofthegridfromasetofmeasurementsatarelativelysmallnumberofsites.Constrainedtothepowerbalancemanifold,thismethodminimizesanobjectivefunctionbasedongenericgridbehavioraswellasanyavailableinformationabouttheparticularstateofthegridtoestimateaselectedsetofgridstatesandparameters.Thesecondapproachusestimedatafromasmallnumberofsitestotrytodetectandlocalizeaneventsuchasafaultedlineinthegrid.Thismethodminimizesanobjectivefunctiondefinedonthetime-varyingpowerbalancemanifoldthatisdesignedtobesensitivetoabruptlocalstateandparameterchanges.Thisdetectionandlocalizationtoolisintendedasanearlywarningsystemorasupplementalcheckwithinalargermulti-modaldetectionsystem.ThecapabilitiesoftheapproachesaredemonstratedthroughsimulationonaIEEEpowerflowtestgrid.I.INTRODUCTIONTheday-to-daydependenceofhomes,industry,commerce,etc.onelectricityrequiresasteadysupplyofelectricpower.TheinterconnectedgridusesSupervisoryControlandDataAcquisition(SCADA)systems,controlsystems,andprotectivedevicesystemstocopewithchangingloaddemandsandgridfailures.Sincethederegulationofelectricpowersystemsthegovernmenthasbeentryingtohelppowersystemcontrolareasunderstandtheirowngridbehaviorandstatustoensurereliablepowerdelivery.Acosteffectiveandeasywayformonitoringgridstatusistousealimitedsetofinstrumentationalreadyinplace.TheuseoflimitedSCADAmeasurementdatacanbeusedasabackupmonitoringtooltoquicklydetectandlocatedevicefailuressuchastransmissionlineoutages.Detectingandlocatingsuchfailuresinatimelyfashionwouldminimizedamagetoconnectingequipmentandreducethepossibilityofcascadingfailureswhileimprovingsituationalawarenessinelectricpowersystemoperations.Inordertoobservethestatusofthegridusinglimitedmeasurementsitesanewtechniquehasbeendeveloped.Thenewtechniqueiscastasanonlinear,constrained,optimiza-tionprobleminwhichthesystemstatesandparametersareforcedtothepower-balancemanifoldandimposedconstraints.BeyondusingSCADAinstrumentationforthepowersystemstateestimator,littleresearchhasbeendeployedinusinganoptimizationapproachwithlimitedmeasurementstoestimategridbehavioranddevicefailures,particularlyoutsideofthelocalareaofmeasurementsites.Theresearcharticlesthatcomeclosetothisapproacharefoundinreferences,1,2,3.Theworkpresentedin1isanewfaultlocationalgorithmbasedonbusvoltages.Anerrorfunctionisevaluatedbydif-ferencingthemeasuredbusvoltagemagnitudesandpredictedbusvoltagemagnitudes.Thepredictedbusvoltagemagnitudesarecalculatedthroughtheuseoftheimpedancematrixandmaximumavailablefaultcurrents.Inworkpresentedby2,existingphasormeasurementunits(PMUs)onthegridareusedtolocatetransmissionlinefaults.Followingasystemeventthebusvoltagephaseangledifferencesattheobservablebusesinthesystemwithrespecttotheirpre-eventvaluescanbedetermined.Afterchangesinvoltagephaseanglesaredeterminedanoptimizationproblemissolvedfordetectingeventoccurrences.Anotherfaultdetectionalgorithmistotrainneuralnetworkstolearnonsimulatedorrealdatafromanelectricpowersystemmodelorrealsystem,respectfully3.Afterthepowersystemathandistrainedmeasurementinputstothesystemarecomparedtotrainedneuralnetworksandclassifiedeitherasfaultsorsomeotheranomalyonthegrid.Theworkpresentedinthispaperdescribesanewalgorithmfordetectingandlocatinganomalouseventssuchasdevicefailuresorlineoutagesinlargeelectricpowersystemsgivenmultipletimemeasurementsfromalimitednumberofremotesites.Lineoutagesaredetectedandlocatedusinganopti-mizationbasedapproach,whereatime-differencingobjectivefunctionisbeingminimizedtoidentifyanygridchanges.Aseparateproblemofthisworkisestimatingstateandparametervaluesinanelectricpowersystemgivensingletimemeasurementinformationfromalimitednumberofremotesites.Toestimatestateandparametervaluesanoptimizationapproachisusedtominimizeanobjectivefunctionbasedupongridoperatingprinciples.II.ESTIMATINGPOWERSYSTEMSTATEThissectiondiscussessolvinganonlinearconstrainedop-timization(NLCO)problemtoprovideasetofdesiredgridinformation.Thismethodattemptstoestimateanapproximatestate(voltagesandpowers)ofthegridfromasetofmea-surementsatarelativelysmallnumberofsites.Constrainedtothepowerbalancemanifold,thismethodminimizesan978-1-4244-4241-6/09/$25.002009IEEEobjectivefunctionbasedongenericgridbehavioraswellasanyavailableinformationabouttheparticularstateofthegridtoestimateaselectedsetofgridstatesandparameters.IncontrasttoNLCOanoptimalpowerflow(OPF)approachhassufficientlymoreknowndata,thatincludesalltheloadrealandreactivepowersaswellasmeasureddatathroughoutthegrid.A.OptimalPowerFlowThemathematicalproblemformulationfortheOPFproblemisasfollows:Minimizef(x)subjecttog(x)=0h(x)0(1)xminxxmaxwherex,theadjustablevariables,arethebusvoltagemagni-tudes,andphaseangles,aswellasthefixedparametersofthesystem.Theobjectivefunction,f(x),isascalarthatrepresentstheminimizationofgeneratorcosts.Theequalityconstraintsg(x)=0representthepowerflowequations.Theinequalityconstraints,h(x)0,boundfunctionsofonvariablessuchaslinepowerflows.Inaddition,limits(xminxxmax)maybeplaceddirectlyonstatevariablesorcontrolvariables.ThisisatypicalOPFproblemformulation,whichcanbesolvedusingseveralmethodsasdiscussedin4.B.ObjectiveFunctionIntheNLCOproblemconsideredtheobjectivefunctionwasdesignedtocapturethecharacteristicsofnormalgridoperation.F=NBussummationdisplayk=1WV,k(Vk1)2+NLinesummationdisplayk=1W,k2k+WPparenleftbiggNGensummationdisplayk=1PGk+NLoadsummationdisplayk=1PLkparenrightbigg2+WQparenleftbiggNGensummationdisplayk=1QGk+NLoadsummationdisplayk=1QLkparenrightbigg2(2)whereWV,k,W,k,WP,WQareweightsgiventoeachtermtoemphasizedifferentlevelsofminimization.Largerweightsminimizespecifictermsmoreheavilythandosmallerweights.TheVkisthevoltagemagnitudeatbusk,NBusisnumberofbusespresent.kisthedifferenceofvoltagephaseanglesacrosslinek,whereNLineisnumberoflines.ThePGkandQGkaretherealandreactivegeneratorpowersatbusk,whereNGenisnumberofgenerators.ThePLkandQLkaretherealandreactiveloadpowersatbusk,whereNLoadisnumberofloads.Inthisproblemtheobjectivefunctionwasweightedasfollows:voltagemagnitudeandvoltagephaseangleswithWV,k=W,k=.01,realpowerlosseswithWP=.1,andreactivepowerlosseswithWQ=.001.Noteweightscouldbescaleduptogivethesameresults.Thefirstterm(Vk1)isthevoltageateachbusbeingdesignednear1p.u.(thenominalbusvoltagemagnitude),thesecondtermkisthedifferenceofljateachtransmissionlinekbetweenbuseslandjusedtokeepksmallforstabilitypurposes,andthethirdandfourthtermswereputintheobjectivefunctiontominimizethetotaltransmissionlinelossesforrealandreactivepower.Forfurtherinformationonnominaloperationoflargeelectricpowersystemssee5.Inthisobjectivefunctioneachtermissquaredtoyieldapositiveobjectivefunction.Ingeneral,thedesignoftheobjectivefunctionisanengineeringlookathowanelectricpowersystemshouldoperateinnormalconditions.C.EqualityConstraints(powerflowconstraints)Thepowerbalanceequationsarethenonlinearequalitycon-straints.Theseequationsdefinethepowerbalancemanifoldtowhichallfeasiblesolutionsareconstrained.GkV2k+Nsummationdisplayj=1,jnegationslash=kVkVj(GjkcoskjBjksinkj)PGkPLk=0(3)BkV2k+Nsummationdisplayj=1,jnegationslash=kVkVj(Gjksinkj+Bjkcoskj)QGkQLk=0(4)GkandBkarethetotallinesshuntconductanceandsusceptanceforalllinesconnectedtobusk,respectively.GjkandBjkarethelinesseriesconductanceandsusceptancefrombusjtok.kjisthedifferenceofphaseangles,jkfrombusjtok.D.InequalityConstraintsTheinequalityconstraintsusedinthisproblemaretherealloadpowersrankedaccordingtosize.Forexampleiftherealloadpoweratbusk,PLk,islargerthanthatofbusj,PLj,i.e.,PLkPLj,thenthisinequalityconstraintcanbewrittenas:PLjPLk=11bracketleftbiggPLjPLkbracketrightbigg0.Ingeneralforrankingofallloads,matrixAcanbeconstructedwith1inthecolumnofthelargerrealpowerand1inthecolumnofthesmallerrealpower.Allotherelementsintheroware0.Thisleadstothegeneralformintheequationbelow.APL1.PLNLoad0(5)PL1throughPLNLoadareallrealloadpowersinthesystem.E.SideConstraintsThesideconstraintsimposelimitsonvariablesateachbusinthesystem.PGkminPGkPGkmaxk=1,.,NGenQGkminQGkQGkmaxk=1,.,NGenVkminVkVkmaxk=1,.,NBuskminkkmaxk=1,.,NBus(6)(7)Whereminandmaxdenotetheminimumandmaximumvaluesintheaboveterms.ThesolverusedforthisnonlinearprogrammingproblemistheMATLABfunctionfmincon,whichisbasedontheSQP(successivequadraticprogramming)method6.ThesoftwarewasdevelopedusingMATLAB7.ForanalysisusingtheNLCOsetup,itisassumedthatalltransmissionlineparameters,Gjks,Bjks,andBksareknownthroughoutthegrid,andGksarepracticallyzeroandareignored.ThecapabilitytoperturbtheseparametersispossibleintheNLCOcode.Intheupcomingtestcase,systemvariablesPGkandVkareknownatbuseswithgeneratorsthroughoutthegrid.Thegeneratorbusvariableswerechosenasknownsbecausetheyaretheheartofapowersystemandthereforeheavilyinstrumented.Itisimportantthatourinitialstartingpointbewithinafea-siblesolutionregion,hencetheimportanceofgridknowledge.AninitialconditionforallunknownVksandksis1p.u.and0rad,respectively.TheloadPLkswerecalculatedbytakingthesumoftheknowngeneratorPGksanddividingbythenumberofloadsinthegrid.LoadQLksandgeneratorQGkswereinitializedusinganassumedpowerfactor(PF).BecauseweknowmeasurementsofrealpoweratallgeneratorswecancalculatethegeneratorreactivepowerassumingaPFat.95.F.ResultsIntheseresultstheIEEE118-bustestsytem(see8fordetails),isusedforsimulationandanalysiswhere15%ofknownmeasurementsaretakenfromthegrid.Thereareatotalof472variablesinthissystem.Thissystemhas118buses,34generators,91loads,and186lines.Thereare34knowngeneratorrealpowersand34knownvoltagemagnitudesatgeneratorbuses.Unknownvariblesinclude:118voltagephaseangle,84voltagemagnitudes,34reactivegeneratorpowersand91realandreactiveloadpowers.Anarbitraryloadflowsolutionofthissystemwasavailablewiththatdataandisusedonlyforcomparison.NLCOsolutionscanbevariedbytuningtheobjectivefunctionweightsoneachterm.Thereareatotaloffourvariablestypesplottedforthissystem:voltagemagnitudes,voltagephaseangles,andloadrealpowersandreactivepowers.Recallrealpowersandmagnitudesofvoltagesatgeneratorbusesareassumedknown(measured),whereforeveryred“*”thatmatchesablack“o”isaknownmeasurement.Ared“*”markerthatdoesnotmatchablack“o”markerrepresentsavariablesolvedforatitsbuslocation.Allotherfigurescanbesimilarlyinterpreted.InFigure1NLCOsoutputforvoltagemagnitudesisrepresentedbyaredlinewitha“*”.Theblackdashedlinewitha“o”isagivenloadflowsolutionforbothsystems.Allreactiveloadpowersareunknownsinthesystem.ThescalingintheFigures3and4maygoupto120onthehorizontalaxisbutkeepinmindthereareonly91loadbusesforthissystem,meaningthereisnota“*”or“o”foreverybusnumber.UsingNLCOinthisworkisusefulforsolvingforunknownvariablesinahighlyunderdeterminedsystemforpurposesofestimatinggridconditions.Toimprovethesolutionmoreinformationaboutthegridisneededintheformofmeasurements,objectivefunction,andconstraints.0204060801001200.920.940.960.9811.021.041.06VoltageMagnitudeBusNumberVoltageMagnitude(V)NLCOLoadFlowFig.1.VoltagemagnitudeforIEEE118-bussystem02040608010010.5BusNumberVoltagePhaseAnlge()VoltagePhaseAngleNLCOLoadFlowFig.2.VoltagephaseangleforIEEE118-bussystem02040608010012032.521.510.500.5BusNumberRealPower(P)OutputLoadPowerPNLCOLoadFlowFig.3.RealloadpowerforIEEE118-bussystem0204060801001BusNumberReactivePower(Q)OutputLoadPowerQNLCOLoadFlowFig.4.ReactiveloadpowerforIEEE118-bussystemIII.NLCOANOMALYDETECTIONAPPROACHTheworkpresentedinthissectionismainfocusofpaperanddescribesanewalgorithmfordetectingandlocatinganomalouseventssuchaslineoutagesinlargeelectricpowersystemsgivenmultipletimemeasurementsfromalimitednumberofremotesites.Lineoutagesaredetectedandlo-catedusinganoptimizationbasedapproach,whereatime-differencingobjectivefunctionisminimizedtobesensitivetoabruptstateandparameterchangesinthegrid.Thesys-temsnonlinearconstraints,inequalityconstraints,andsideconstraints,usedintheprevioussectionareidentical.Thedifferencesaretheobjectivefunction,measurementstaken,andremotesitelocation.Overtimefminconminimizestheobjectivefunctionbaseduponatime-seriesofmeasurements.TheoutputoftheNLCOcodeisavectorfilledstatevaluesfortimesatwhichmeasurementsweretaken.Forlargeelectricpowersystemsitisdifficulttolookatvariousplotsofthetime-seriesdatafordetectionandlocationofthelineoutage.Toovercomethisproblemitwascrucialtounderstandgridbehaviorduringalineoutage.AMATLAB-basedsimulationandanalysiscodeforelectricpower(EP)systems,alsoknownastheEPcode9,wasusedtosimulatelineoutagesandstudyhowthegridreacted.Itwasobservedthatthemostcommontrendduringalineoutagewasvoltagemagnitudeandvoltagephaseanglewoulddivergeacrosslines.Obtainingthisgridknowledgewasimportantforthedevelopmentofpost-processingtool-setsnecessarytoanalyzetheoutputoftheNLCOcode.Thetoolsusedarebasedoffthebusvoltagemagnitudesandbusvoltagephaseangles.Lackingdatafromarealpowersystem,themultipletimemeasurementsusedintheNLCOcodearesyntheticmea-surementstakenfromtheEPsimulationandanalysiscode.Themethodusedforchoosingmeasurementsistofindandrankthesteady-statesensitivitiesofthemeasuredquantitieswithrespecttothelineparameters.Figure5isabigpicturelookattheNLCOfordetectionandlocationoflineoutagesonthegrid.TheprocessstartsbytakingmeasurementsfromGeneratedMultipleTimeMeasurementsBusVoltageMagnitude,GeneratorRealPower,LoadRealPowerOptimizationProcessOptimizationOutputBusVoltageMagnitudesBusVoltagePhaseAngles*NormalOperatingProcedures&ConstraintBasedGridKnowledgeTime(sec)*Time(sec)*Time(sec)*Fig.5.NLCOProcessfor118-bustestsystem.limitedsitesonthegrid,inthisdiagramthegeneratedmultipletimemeasurementsaretakenfromthetransformerwiththegreenoutline.Thebusvoltagemagnitude,generatorrealpowerandloadrealpowerarethensenttotheoptimizationblockforprocessing.Genericgridknowledgeisalsosenttotheoptimizationprocessintheformofconstraints.TheoutputofNLCOistime-seriesdatanotonlyforbusvoltagemagnitudeandvoltagephaseangleasshowninthefigure,butalsoforallotherunknownvariables(suchasloadpowers)beingsolved.A.Time-DifferencingObjectiveFunctionAmathematicaldescriptionofthetime-differencingobjec-tivefunctionisshowninequation8.Allsummationtermsaresimpletime-differencesbetweenthecurrentsetofunknownsatiterationitandtheirvaluesatpreviousiterationit1.F=Nbussummationdisplayk=1WV,k(Vk(it)Vk(it1)2+Nbussummationdisplayk=1W,k(k(it)k(it1)2+NGensummationdisplayk=1WPG,k(PG,k(it)PG,k(it1)2+NLoadsummationdisplayk=1WPL,k(PL,k(it)PL,k(it1)2+NGensummationdisplayk=1WQG,k(QG,k(it)QG,k(it1)2+NLoadsummationdisplayk=1WQL,k(QL,k(it)QL,k(it1)2(8)Lookingattermsinequation8,allothervariablesattheit1iterationneedtobefilledwithafeasiblestartingpointtogetthetime-differencingobjectivefunctionstarted.Thisfirstsolutionisfilledinwithabestinitialconditionthatsatisfiespowerbalanceequations3and4aswellasconstraintsjustlikewasdoneinwiththeobjectivefunctioninsectionII.Thestartingpointforoptimizationisthesolutionatthepreviousiterationwithnewmeasurementstakenasknowns.Theinitialstartingpointfromstarttofinishofthisalgorithmchangesateveryiterationduetothenewsetofchangingmeasurementsinjectedintoequations3and4.Lookingatequation8itmustbeunderstoodthatthegoalistominimizeanychange,meaningfromstarttofinishtheinitialconditionwillnotchange,butwhathasbeenfoundandwillbeshowninthefollowingresults,isthereisenoughofachangetobeabletodetectandcloselyapproximatewherethelineoutageoccurred.B.ResultsTheresultspresentedallcomefromtestsrunontheIEEE118-bussystem.Themeasurementsusedwere15generatorrealpowers(PGks),10realandreactiveloadpowers(PLks,QLks),and15voltagemagnitudes(Vks).Figure6isaMATLABgenerateddiagramoftheIEEE118-bustestsystemusedforvisualizationandinterpretationofresults.Thesmallerblacksquaresarethebusesinthesystem,theredboxesindicatewheremeasurementsweretaken,theblueandyellowboxesspecifytheresultoflineoutagedetectiontoolsusedinalltestcases,andthethickredlinesignifiesthelineoutage.ThearrowspointingfromthedVnanddn,arewherethelineoutagedetectiontoolspickedoutthebiggestchangeonthegrid.ThedVnanddntoolsarethedifferenceofvoltagemagnitudesandvoltagephaseanglestakenacrosstransmissionlinesandthentime.ThemetricusedtocomputehowfarthetoolswereawayfromtheactuallineoutagewasDijkstrashortestpathcode10.Thiscodefindstheshortestpathfromaselectedsourcebustoallotherbusesinthegrid.InthefirsttestcaseshowninFigure6thedntoolfoundamaximumchangeinvoltagephaseangleat2and3busesawayfromthebusesconnectingthefaultedline.ThedVntoolfoundalargestchangeinvoltagemagnitudeat2and3busesawayfromthebusesconnectingthefaultedline.Thereisahoppairawayfromthefaultedlinebecausethesetwospecifictoolsfindchangesacrosslines.123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118dnLineOutagedVnMeasurementsdVndnFig.6.MATLABgenerateddiagramoflineoutagelocationandlocationestimatedbyoutagedetectors.Lineoutagewasbetweenbuses34and36,and50measurementswereused.InTableI,8testcaseswererunonrandomlyselectedtransmissionlinesinthegrid.Thefirstcolumnisthebusnumbersoneitherendofthetransmissionlinethatwastakenoutofservice.Thesecondcolumnisthetool-setthatwasusedtofindthelineoutage.Thethirdcolumnisthedistanceinbusesawayfromthelineoutagetothebusesselectedbythetool-sets.Thefourthcolumnistheaveragedistanceinbusesawayfromthelineoutagetoallmeasurementbusesinthegrid.Inthesamesetoftestcasesanormalprobabilitydistributionfunctionwasusedtoperturballthelineparametersindepen-dentlybyastandard
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年日语能力测试N1级阅读专项试卷:深度阅读与理解
- 齐鲁师范学院《网球(2)》2024-2025学年第一学期期末试卷
- 2025年钎焊技术速成指南与考试题库
- 2025年仓库运营经理面试预测题及经验
- 潍坊科技学院《面点工艺学》2024-2025学年第一学期期末试卷
- 贵阳职业技术学院《计算机仿真语言》2024-2025学年第一学期期末试卷
- 中药粉碎机考核试题(附答案)
- 2025年初中地理特岗教师招聘考试重点解析与模拟题
- 2025年初中体育教师招聘笔试备考热点与预测题解析
- 湖北工业大学工程技术学院《三笔基础二》2024-2025学年第一学期期末试卷
- GB/T 35770-2022合规管理体系要求及使用指南
- GB/T 3277-1991花纹钢板
- 低空无人机遥感技术及应用课件
- 社会组织规范化建设评价指标体系解读课件
- 英语剧本 小王子
- 民间信仰活动场所信息采集表
- UASB厌氧塔设计计算书
- 2009-2022历年江苏省镇江市丹阳市事业单位考试《综合知识和能力素质(会计审计类岗位)》真题含答案2022-2023上岸必备带详解版3
- 神华包头煤化工分公司2013年夏季水平衡测试报告
- 项目工作计划进度表Excel模板(推荐)
- 工程甲方指令单
评论
0/150
提交评论