2010中考数学分类汇编-动态综合型问题2.doc_第1页
2010中考数学分类汇编-动态综合型问题2.doc_第2页
2010中考数学分类汇编-动态综合型问题2.doc_第3页
2010中考数学分类汇编-动态综合型问题2.doc_第4页
2010中考数学分类汇编-动态综合型问题2.doc_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2010中考数学分类汇编一、选择题1(2010湖北鄂州)如图所示,四边形OABC为正方形,边长为6,点A、C分别在x轴,y轴的正半轴上, 点在OA上,且点的坐标为(2,0),P是OB上的一个动点,试求PD+PA和的最小值是( )ABC4D6【答案】A 23456789101112131415161718192021222324252627282930二、填空题123456789101112131415161718192021222324252627282930三、解答题1(2010广东中山)如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动连接FM、MN、FN,当F、N、M不在同一直线时,可得FMN,过FMN三边的中点作PQW设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒试解答下列问题:(1)说明FMNQWP;(2)设0x4(即M从D到A运动的时间段)试问x为何值时,PQW为直角三角形?当x在何范围时,PQW不为直角三角形?(3)问当x为何值时,线段MN最短?求此时MN的值【答案】解:(1)由题意可知P、W、Q分别是FMN三边的中点,PW是FMN的中位线,即PWMNFMNQWP(2)由题意可得 DM=BN=x,AN=6-x,AM=4-x,由勾股定理分别得 =,=+=+当=+时,+=+解得 当=+时,+=+此方程无实数根=+时,=+解得 (不合题意,舍去),综上,当或时,PQW为直角三角形;当0x或x4时,PQW不为直角三角形(3)当0x4,即M从D到A运动时,只有当x=4时,MN的值最小,等于2;当4x6时,=+=+=当x=5时,取得最小值2,当x=5时,线段MN最短,MN=2(2010湖南常德)如图9, 已知抛物线与轴交于A (4,0) 和B(1,0)两点,与轴交于C点(1)求此抛物线的解析式;(2)设E是线段AB上的动点,作EF/AC交BC于F,连接CE,当CEF的面积是BEF面积的2倍时,求E点的坐标;(3)若P为抛物线上A、C两点间的一个动点,过P作轴的平行线,交AC于Q,当P点运动到什么位置时,线段PQ的值最大,并求此时P点的坐标xyOBCA图9【答案】解:(1)由二次函数与轴交于、两点可得:解得:故所求二次函数的解析式为(2)SCEF=2 SBEF, EF/AC, , BEFBAC, 得故E点的坐标为(,0).(3)解法一:由抛物线与轴的交点为,则点的坐标为(0,2)若设直线的解析式为,则有解得: 故直线的解析式为若设点的坐标为,又点是过点所作轴的平行线与直线的交点,则点的坐标为(则有:即当时,线段取大值,此时点的坐标为(2,3)解法二:延长交轴于点,则要使线段最长,则只须的面积取大值时即可.设点坐标为(,则有: 即时,的面积取大值,此时线段最长,则点坐标为(2,3)3(2010湖北荆州)如图,直角梯形OABC的直角顶点O是坐标原点,边OA,OC分别在x轴、y轴的正半轴上,OABC,D是BC上一点,BD=OA=,AB=3,OAB=45,E、F分别是线段OA、AB上的两动点,且始终保持DEF=45(1)直接写出D点的坐标;(2)设OE=x,AF=y,试确定y与x之间的函数关系;(3)当AEF是等腰三角形时,将AEF沿EF折叠,得到,求与五边形OEFBC重叠部分的面积【答案】解:(1)D点的坐标是.(2)连结OD,如图(1),由结论(1)知:D在COA的平分线上,则DOE=COD=45,又在梯形DOAB中,BAO=45,OD=AB=3由三角形外角定理得:1=DEA-45,又2=DEA-451=2, ODEAEF,即:y与x的解析式为:(3)当AEF为等腰三角形时,存在EF=AF或EF=AE或AF=AE共3种情况. 当EF=AF时,如图(2).FAE=FEA=DEF=45,AEF为等腰直角三角形.D在AE上(AEOA),B在AF上(AFEF)AEF与五边形OEFBC重叠的面积为四边形EFBD的面积.(也可用) 当EF=AE时,如图(3),此时AEF与五边形OEFBC重叠部分面积为AEF面积.DEF=EFA=45, DEAB , 又DBEA四边形DEAB是平行四边形AE=DB=当AF=AE时,如图(4),四边形AEAF为菱形且AEF在五边形OEFBC内. 此时AEF与五边形OEFBC重叠部分面积为AEF面积. 由(2)知ODEAEF,则OD=OE=3 AE=AF=OA-OE= 过F作FHAE于H,则综上所述,AEF与五边形OEFBC重叠部分的面积为或1或4(2010湖北鄂州)如图,在直角坐标系中,A(-1,0),B(0,2),一动点P沿过B点且垂直于AB的射线BM运动,P点的运动速度为每秒1个单位长度,射线BM与x轴交与点C(1)求点C的坐标(2)求过点A、B、C三点的抛物线的解析式(3)若P点开始运动时,Q点也同时从C出发,以P点相同的速度沿x轴负方向向点A运动,t秒后,以P、Q、C为顶点的三角形为等腰三角形(点P到点C时停止运动,点Q也同时停止运动)求t的值(4)在(2)(3)的条件下,当CQ=CP时,求直线OP与抛物线的交点坐标【答案】(1)点C的坐标是(4,0);(2)设过点A、B、C三点的抛物线的解析式为y=ax2+bx+c(a0),将点A、B、C三点的坐标代入得:解得,抛物线的解析式是:y= x2+x+2(3)设P、Q的运动时间为t秒,则BP=t,CQ=t以P、Q、C为顶点的三角形为等腰三角形,可分三种情况讨论若CQ=PC,如图所示,则PC= CQ=BP=t有2t=BC=,t=若PQ=QC,如图所示,过点Q作DQBC交CB于点D,则有CD=PD由ABCQDC,可得出PD=CD=,解得t=若PQ=PC,如图所示,过点P作PEAC交AC于点E,则EC=QE=PC,t=(-t),解得t=(4)当CQ=PC时,由(3)知t=,点P的坐标是(2,1),直线OP的解析式是:y=x,因而有x =x2+x+2,即x2-2x-4=0,解得x=1,直线OP与抛物线的交点坐标为(1+,)和(1-,)5(2010湖北省咸宁)如图,直角梯形ABCD中,ABDC,动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动当点M到达点B时,两点同时停止运动过点M作直线lAD,与线段CD的交点为E,与折线A-C-B的交点为Q点M运动的时间为t(秒)(1)当时,求线段的长;(2)当0t2时,如果以C、P、Q为顶点的三角形为直角三角形,求t的值;(3)当t2时,连接PQ交线段AC于点R请探究是否为定值,若是,试求这个定值;若不是,请说明理由ABCD(备用图1)ABCD(备用图2)QABCDlMP(第24题)E【答案】解:(1)过点C作于F,则四边形AFCD为矩形QABCDlMP(第24题)EF,此时,RtAQMRtACF2分即,(2)为锐角,故有两种情况:当时,点P与点E重合此时,即,ABCD(备用图1)QPElM当时,如备用图1,此时RtPEQRtQMA,由(1)知,而, 综上所述,或(3)为定值当2时,如备用图2,ABCD(备用图2)MQRFP由(1)得, 四边形AMQP为矩形 CRQCAB6(2010江苏扬州)在ABC中,C90,AC3,BC4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与ABC的直角边相交于点F,设AEx,AEF的面积为y(1)求线段AD的长;(2)若EFAB,当点E在线段AB上移动时,求y与x的函数关系式(写出自变量x的取值范围)当x取何值时,y有最大值?并求其最大值;(3)若F在直角边AC上(点F与A、C两点均不重合),点E在斜边AB上移动,试问:是否存在直线EF将ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由ABCDABCD备用图【答案】解:(1)AC=3,BC=4AB=5ACBC=ABCD,CD=,AD= (2)当0x时 EFCDAEFADC即EF=xy=xx= 当x5时 易得BEFBDC,同理可求EF=(5x) y=x(5x)= 当0x时,y随x的增大而增大.y=,即当x=时,y最大值为 当x5时, 当时,y的最大值为 当时,y的最大值为(3)假设存在 当0x5时,AF=6x 06x3 3x6 3x5 作FGAB与点G 由AFGACD可得 ,即FG= x= =3,即2x2-12x+5=0 解之得x1=,x2= 3x15 x1=符合题意 x2=3 x2不合题意,应舍去 存在这样的直线EF,此时,x=7(2010北京)在平面直角坐标系xOy中,抛物线与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上(1)求B点的坐标;(2)点P在线段OA上,从O点出发向A点运动,过P点作x轴的垂线,与直线OB交与点E,延长PE到点D,使得ED=PE,以PD为斜边,在PD右侧做等等腰直角三角形PCD(当P点运动时,C点、D点也随之运动)当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长;1yxO(第24题)123424331234412若P点从O点出发向A点作匀速运动,速度为每秒1个单位,同时线段OA上另一个点Q从A点出发向O点作匀速运动,速度为每秒2个单位(当Q点到达O点时停止运动,P点也同时停止运动)过Q点做x轴的垂线,与直线AB交与点F,延长QF到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当Q点运动时,M点、N点也随之运动)若P点运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t的值【答案】解:(1)抛物线经过原点,m23m+2=0.解的m1=1,m2=2.由题意知m1.m=2,抛物线的解析式为点B(2,n)在抛物线,n=4.B点的坐标为(2,4)(2)设直线OB的解析式为y=k1x求得直线OB的解析式y=2xA点是抛物线与x轴的一个交点,可求得A点的坐标为(10,0),设P点的坐标为(a,0),则E点的坐标为(a,2a)根据题意做等腰直角三角形PCD,如图1. 可求得点C的坐标为(3a,2a),有C点在抛物线上,得2a=x(3a)2+x3a.即a2 a=0解得 a1=,a2=0(舍去)OP= 依题意作等腰直角三角形QMN.设直线AB的解析式y=k2x+b由点A(10 ,0),点B(2,4),求得直线AB的解析式为y=x+5当P点运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,有以下三种情况:第一种情况:CD与NQ在同一条直线上,如图2所示,可证DPQ为等腰直角三角形此时QP、OP、AQ的长可依次表示为t 、4t、 2t个单位PQ = DP = 4tt+4t+2t=10t=第二种情况:PC与MN在同一条直线上,如图3所示可证PQM为等腰直角三角形此时OP、AQ的长依次表示为t、2t个单位,OQ = 10 2tF点在直线AB上FQ=tMQ=2tPQ=MQ=CQ=2tt+2t+2t=10t=2.第三种情况:点P、Q重合时,PD、QM在同一条直线上,如图4所示,此时OP、AQ的长依次表示为t、2t个单位t+2t=10t=综上,符合题意的值分别为,2,8(2010云南红河哈尼族彝族自治州)如图9,在直角坐标系xoy中,O是坐标原点,点A在x正半轴上,OA=cm,点B在y轴的正半轴上,OB=12cm,动点P从点O开始沿OA以cm/s的速度向点A移动,动点Q从点A开始沿AB以4cm/s的速度向点B移动,动点R从点B开始沿BO以2cm/s的速度向点O移动.如果P、Q、R分别从O、A、B同时移动,移动时间为t(0t6)s.(1)求OAB的度数.(2)以OB为直径的O与AB交于点M,当t为何值时,PM与O相切?(3)写出PQR的面积S随动点移动时间t的函数关系式,并求s的最小值及相应的t值.(4)是否存在APQ为等腰三角形,若存在,求出相应的t值,若不存在请说明理由.【答案】解:(1)在RtAOB中:tanOAB=OAB=30(2)如图10,连接OP,OM. 当PM与O相切时,有PM O=PO O=90, PM OPO O由(1)知OBA=60OM= OBOBM是等边三角形B OM=60可得O OP=M OP=60OP= O OtanO OP =6tan60=又OP=tt=,t=3即:t=3时,PM与O相切.(3)如图9,过点Q作QEx于点E BAO=30,AQ=4t QE=AQ=2t AE=AQcosOAB=4tOE=OA-AE=-t Q点的坐标为(-t,2t) SPQR= SOAB -SOPR -SAPQ -SBRQ = = = () 当t=3时,SPQR最小= (4)分三种情况:如图11.当AP=AQ1=4t时,OP+AP=t+4t=t=或化简为t=-18当PQ2=AQ2=4t时 过Q2点作Q2Dx轴于点D,PA=2AD=2A Q2cosA=t即t+t =t=2当PA=PQ3时,过点P作PHAB于点H AH=PAcos30=(-t)=18-3tAQ3=2AH=36-6t得36-6t=4t,t=3.6 综上所述,当t=2,t=3.6,t=-18时,APQ是等腰三角形.9(2010云南楚雄)已知:如图,与轴交于C、D两点,圆心的坐标为(1,0),的半径为,过点C作的切线交于点B(4,0)(1)求切线BC的解析式;(2)若点P是第一象限内上一点,过点P作A的切线与直线BC相交于点G,且CGP120,求点的坐标;(3)向左移动(圆心始终保持在上),与直线BC交于E、F,在移动过程中是否存在点,使得AEF是直角三角形?若存在,求出点 的坐标,若不存在,请说明理由【答案】解:(1)连接,是A的切线,即,点坐标是(0,2)设直线的解析式为,该直线经过点B(4,0)与点(0,2), 解得 该直线解析式为(2)连接,过点作由切线长定理知在中,在中,由勾股定理得 又,则是点的纵坐标,解得点的坐标 (3)如图示,当在点的右侧时 、在上,若是直角三角形,则,且为等腰直角三角形过点作,在中由三角函数可知又 , ,点 坐标是当在点的左侧时:同理可求点 坐标是10(2010四川乐山)如图(13.1),抛物线yx2+bx+c与x轴交于A,B两点,与y轴交于点C(0,2),连接AC,若tanOAC2(1)求抛物线对应的二次函数的解析式;(2)在抛物线的对称轴l上是否存在点P,使APC90,若存在,求出点P的坐标;若不存在,请说明理由;(3)如图(13.2)所示,连接BC,M是线段BC上(不与B、C重合)的一个动点,过点M作直线ll,交抛物线于点N,连接CN、BN,设点M的横坐标为t当t为何值时,BCN的面积最大?最大面积为多少?【答案】解:(1)抛物线y=x2bxc过点C(0,2). x=2又tanOAC=2, OA=1,即A(1,0).又点A在抛物线y=x2bx2上. 0=12b12,b=3抛物线对应的二次函数的解析式为y=x23x2(2)存在过点C作对称轴l的垂线,垂足为D,如图所示,x=.AE=OE-OA=-1=,APC=90,tanPAE= tanCPD,即,解得PE=或PE=,点P的坐标为(,)或(,)。(备注:可以用勾股定理或相似解答)(3)如图,易得直线BC的解析式为:y=-x2,点M是直线l和线段BC的交点,M点的坐标为(t,-t+2)(0t2)MN=-t+2-(t23t2)=- t22tSBCM= SMNC+SMNB=MNt+MN(2-t)=MN(t+2-t)=MN=- t22t(0t2),SBCN=- t22t=-(t-1)2+1当t=1时,SBCN的最大值为1。11(2010黑龙江哈尔滨)如图,在平面直角坐标系中,点O是坐标原点,四边形AOCB是梯形,ABOC,点A的坐标为(0,8),点C的坐标为(10,0),OBOC (1)求点B的坐标; (2)点P从C点出发,沿线段CO以5个单位/秒的速度向终点O匀速运动,过点P作PHOB,垂足为H,设HBP的面积为S(S0),点P的运动时间为t秒,求S与t之间的函数关系式(直接写出自变量t的取值范围); (3)在(2)的条件下,过点P作PMCB交线段AB于点M,过点M作MROC,垂足为R,线段MR分别交直线PH、OB于点E、G,点F为线段PM的中点,连接EF,当t为何值时,? 【答案】解:(1)如图1,过点B作BNOC,垂中为N由题意知OB=OC=10,BN=OA=81分 B(6,8) (2)如图1, (3)当点G在点E上方时,如图2,过点B作,垂足为 四边形BMPC是平行四边形 PMCB OPD=OCB ODP=OBCOPD=ODP OPD+RMP=90 ODP+DPH=90RMP=DPH EM=EF 点F为PM的中点 EFPMEMF=PMR EFM=PRM=90 MEFMPRAB/OC MBG=BON 又GMB=ONB=90MGBNBO 当点G在点E下方时如图3 同理可得 MG=ME+EG=5+2=7 12(2010江苏徐州)如图,梯形ABCD中,C=90动点E、F同时从点B出发,点E沿折线 BAADDC运动到点C时停止运动,点F沿BC运动到点C时停止运动,它们运动时的速度都是1 cm/s设E、F出发t s时,EBF的面积为y cm2已知y与t的函数图象如图所示,其中曲线OM为抛物线的一部分,MN、NP为线段请根据图中的信息,解答下列问题: (1)梯形上底的长AD=_cm,梯形ABCD的面积_cm2; (2)当点E在BA、DC上运动时,分别求出y与t的函数关系式(注明自变量的取值范围); (3)当t为何值时,EBF与梯形ABCD的面积之比为1:2.【答案】1314(2010 山东东营) 如图,在锐角三角形ABC中,ABC的面积为48,D,E分别是边AB,AC上的两个动点(D不与,重合),且保持DEBC,以DE为边,在点的异侧作正方形DEFG.(1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;B(第24题图)ADEFGCB(备用图(1)ACB(备用图(2)AC(2)设DE = x,ABC与正方形DEFG重叠部分的面积为,试求关于的函数关系式,写出x的取值范围,并求出y的最大值.【答案】解:(1)当正方形DEFG的边GF在BC上时,如图(1),过点A作BC边上的高AM,交DE于N,垂足为M.B(第24题图(1))ADEFGCMNSABC=48,BC=12,AM=8. DEBC,ADEABC, 1分,而AN=AMMN=AMDE,. 2分解之得.当正方形DEFG的边GF在BC上时,正方形DEFG的边长为4.8.3分B(第24题图(2)ADEFGC(2)分两种情况:当正方形DEFG在ABC的内部时,如图(2),ABC与正方形DEFG重叠部分的面积为正方形DEFG的面积,DE=x,此时x的范围是4.84分当正方形DEFG的一部分在ABC的外部时,如图(2),设DG与BC交于点Q,EF与BC交于点P,MB(第24题图(3))ADEFGCNPQABC的高AM交DE于N,DE=x,DEBC,ADEABC, 5分即,而AN=AMMN=AMEP, ,解得.6分所以, 即.7分由题意,x4.8,x12,所以.因此ABC与正方形DEFG重叠部分的面积为(023.04,所以ABC与正方形DEFG重叠部分的面积的最大值为24. 10分15(2010广东东莞)如图(1),(2)所示,矩形ABCD的边长AB6,BC4,点F在DC上,DF2动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动连接FM、MN、FN,当F、N、M不在同一直线时,可得FMN,过FMN三边的中点作PQW设动点M、N的速度都是1个单位秒,M、N运动的时间为x秒试解答下列问题:说明FMN QWP;设04(即M从D到A运动的时间段)试问为何值时,PQW为直角三角形?当在何范围时,PQW不为直角三角形?问当为何值时,线段MN最短?求此时MN的值【答案】P、Q、W分别为FMN三边的中点PQFN,PWMNMNFPQMQPW同理:NFMPQWFMN QWP由得FMN QWP,所以FMN为直角三角形时,QWP也为直角三角形如图,过点N作NECD于E,根据题意,得DMBM,AM4,ANDE6DF2,EF4MF222x2x24,MN2(4x)2(6x)22x220x52,NF2(4x)242x28x32, 如果MNF90,则有2x22

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论