已阅读5页,还剩30页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
High-ThroughputAsynchronous Pipelines forFine-Grain Dynamic Datapaths,Montek Singh and Steven NowickColumbia UniversityNew York, USAmontek,/montek,Intl. Symp. Adv. Res. Asynchronous Circ. Syst. (ASYNC), April 2-6, 2000, Eilat, Israel.,2,Outline,IntroductionBackground: Williams PS0 pipelinesNew Pipeline DesignsDual-Rail: LP3/1, LP2/2 and LP2/1Single-Rail: LPSR2/1Practical Issue: Handling slow environmentsResults and Conclusions,3,Why Dynamic Logic?,Potentially:Higher speedSmaller area“Latch-free” pipelines:Logic gate itself provides an implicit latchlower latencyshorter cycle timesmaller area very important in gate-level pipelining!Our Focus: Dynamic logic pipelines,4,How Do We Achieve High Throughput?,Introduce novel pipeline protocols:specifically target dynamic logicreduce impact of handshaking delaysshorter cycle timesPipeline at very fine granularity:“gate-level:” each stage is a single-gate deephighest throughputs possiblelatch-free datapaths especially desirabledynamic logic is a natural match,5,Prior Work: Asynchronous Pipelines,Sutherland (1989), Yun/Beerel/Arceo (1996)very elegant 2-phase control expensive transition latchesDay/Woods (1995), Furber/Liu (1996)4-phase control simpler latches, but complex controllersKol/Ginosar (1997)double latches greater concurrency, but area-expensiveMolnar et al. (1997-99)Two designs: asp* and micropipeline both very fast, but:asp*: complex timing, cannot handle latch-free dynamic datapathsmicropipeline: area-expensive, cannot do logic processing at all!Williams (1991), Martin (1997)dynamic stages no explicit latches! low latencythroughput still limited,6,Background,IntroductionBackground: Williams PS0 pipelinesNew Pipeline DesignsDual-Rail: LP3/1, LP2/2 and LP2/1Single-Rail: LPSR2/1Practical Issue: Handling slow environmentsResults and Conclusions,7,PS0 Pipelines (Williams 1986-91),Basic Architecture:,8,PS0 Function Block,Each output is produced using a dynamic gate:,9,Dual-Rail Completion Detector,OR together two rails of each bitCombine results using C-element,10,Precharge Evaluate: another 3 events,Complete cycle: 6 events,N+1 indicates “done”,PRECHARGE N: when N+1 completes evaluationEVALUATE N: when N+1 completes precharging,PS0 Protocol,N evaluates,N+1 evaluates,N+2 evaluates,N+2 indicates “done”,N+1 precharges,Evaluate Precharge: 3 events,N,N+1,N+2,11,PS0 Performance,Cycle Time =,12,New Pipeline Designs,IntroductionBackground: Williams PS0 pipelinesNew Pipeline DesignsDual-Rail: LP3/1, LP2/2 and LP2/1Single-Rail: LPSR2/1Practical Issue: Handling slow environmentsResults and Conclusions,13,Overview of Approach,Our Goal: Shorter cycle time, without degrading latencyOur Approach: Use “Lookahead Protocols” (LP):main idea: anticipate critical events based on richer observationTwo new protocol optimizations:“Early evaluation:”give stage head-start on evaluation by observing events further down the pipeline(actually, a similar idea proposed by Williams in PA0,but our designs exploit it much better)“Early done:”stage signals “done” when it is about to precharge/evaluate,14,Uses “early evaluation:”each stage now has two control inputsthe new input comes from two stages aheadevaluate N as soon as N+1 starts precharging,Dual-Rail Design #1: LP3/1,15,LP3/1 Protocol,PRECHARGE N: when N+1 completes evaluationEVALUATE N: when N+2 completes evaluation,N evaluates,N+1 evaluates,N+2 indicates “done”,N+2 evaluates,N,N+1,N+2,16,PS0,LP3/1,LP3/1: Comparison with PS0,Only 4 events in cycle!,6 events in cycle,N,N+1,N+2,N,N+1,N+2,17,LP3/1 Performance,Cycle Time =,saved path,Savings over PS0: 1 Precharge + 1 Completion Detection,18,Inside a Stage: Merging Two Controls,Precharge when PC=1(and Eval=0)Evaluate “early” when Eval=1(or PC=0),A NAND gate combinesthe two control inputs:,Problem: “early” Eval=1 is non-persistent!it may get de-asserted before the stage has completed evaluation!,19,LP3/1 Timing Constraints: Example,Observation: PC=0 soon after Eval=1, and is persistent use PC as safe “takeover” for Eval!Solution: no change!Timing Constraint: PC=0 arrives before Eval=1 is de-assertedsimple one-sided timing requirementother constraints as well all easily satisfied in practice,Problem: “early” Eval=1 is non-persistent!,20,Dual-Rail Design #2: LP2/2,Uses “early done:”completion detector now before functional blockstage indicates “done” when about to precharge/evaluate,21,LP2/2 Completion Detector,Modified completion detectors needed:Done=1 when stage starts evaluating, and inputs validDone=0 when stage starts prechargingasymmetric C-element,22,LP2/2 Protocol,Completion detection occurs in parallel with evaluation/precharge:,N evaluates,N+1 evaluates,N,N+1,N+2,23,LP2/2 Performance,1,2,4,Cycle Time =,LP2/2 savings over PS0: 1 Evaluation + 1 Precharge,24,Dual-Rail Design #3: LP2/1,Hybrid of LP3/1 and LP2/2. Combines:early evaluation of LP3/1early done of LP2/2,Cycle Time =,25,New Pipeline Designs,IntroductionBackground: Williams PS0 pipelinesNew Pipeline DesignsDual-Rail: LP3/1, LP2/2 and LP2/1Single-Rail: LPSR2/1Practical Issue: Handling slow environmentsResults and Conclusions,26,Single-Rail Design: LPSR2/1,Derivative of LP2/1, adapted to single-rail:bundled-data: matched delays instead of completion detectors,27,Inside an LPSR2/1 Stage,28,LPSR2/1 Protocol,Cycle Time =,N evaluates,N,N+1,N+2,29,Practical Issue: Handling Slow Environments,We inherit a timing assumption from Williams PS0:Input (left) environment must precharge reasonably fastProblem:If environment is stuck in precharge,all pipelines (incl. PS0) will malfunction!Our Solution:Add a special robust controller for 1st stagesimply synchronizes input environment and pipelinedelay critical events until environment has finished prechargeModular solution overcomes shortcoming of Williams PS0No serious throughput overheadreal bottleneck is the slow environment!,30,Results and Conclusions,IntroductionBackground: Williams PS0 pipelinesNew Pipeline DesignsDual-Rail: LP3/1, LP2/2 and LP2/1Single-Rail: LPSR2/1Practical Issue: Handling slow environmentsResults and Conclusions,31,Results,Designed/simulated FIFOs for each pipeline style Experimental Setup:design: 4-bit wide, 10-stage FIFOtechnology: 0.6 HP CMOSoperating conditions: 3.3 V and 300K,32,dual-rail,single-rail,Comparison with Williams PS0,LP2/1: 2X faster than Williams PS0LPSR2/1: 1.2 Giga items/sec,33,Comparison: LPSR2/1 vs. Molnar FIFOs,LPSR2/1 FIFO: 1.2 Giga items/secAdding logic processing to FIFO:simply fold logic into dynamic gate little overheadComparison with Molnar FIFOs:asp* FIFO: 1.1 Giga items/secmore complex timing assumptions not easily formalizedrequires explicit latches, separate from logic!adding logic processing between stages significant overheadmicropipeline: 1.7 Giga items/sectwo parallel FIFOs, each only 0.85 Giga/secvery expensive transition latchescannot add logic processing to FIFO!,34,P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初中实验室应急预案
- 成都市 2024-2025 学年小学五年级科学期中培优模拟卷及答案详解
- 2024-2025 学年度成都市小学五年级道德与法治期中全真模拟试卷(含答案)
- 2025年综合护理知识试题及答案
- 2025年湖南省公务员申论冲刺押题卷
- 2025年测绘考试题及答案
- 2025年美术的常识试题及答案
- 2025年辽宁省公务员考试面试模拟试卷
- 风险评估与管理流程
- 车辆行驶记录仪视场调整方法
- 志愿服务条例知识培训课件
- 民族苗族介绍课件
- 血液中心面试题库分析与指导
- 新疆中考物理实验题分析及指导
- 《金属材料及热处理》课件 项目5 金属的结晶过程与控制
- 2025至2030中国入侵检测系统行业项目调研及市场前景预测评估报告
- 乙型肝炎后肝硬化失代偿期的护理查房
- 火力发电厂分散控制系统技术条件DL/T 1083
- 天鹅会SPA中心员工手册
- 协会档案印章管理制度
- 事业单位国有资产无偿划转意向协议书10篇
评论
0/150
提交评论