高三数学第一轮复习教案(第二章函数12课时).doc_第1页
高三数学第一轮复习教案(第二章函数12课时).doc_第2页
高三数学第一轮复习教案(第二章函数12课时).doc_第3页
高三数学第一轮复习教案(第二章函数12课时).doc_第4页
高三数学第一轮复习教案(第二章函数12课时).doc_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章 函数第1课时 函数的概念一课题:函数的概念二教学目标:了解映射的概念,在此基础上加深对函数概念的理解;能根据函数的三要素判断两个函数是否为同一函数;理解分段函数的意义三教学重点:函数是一种特殊的映射,而映射是一种特殊的对应;函数的三要素中对应法则是核心,定义域是灵魂四教学过程:(一)主要知识:1对应、映射、像和原像、一一映射的定义; 2函数的传统定义和近代定义;3函数的三要素及表示法(二)主要方法:1对映射有两个关键点:一是有象,二是象惟一,缺一不可;2对函数三要素及其之间的关系给以深刻理解,这是处理函数问题的关键;3理解函数和映射的关系,函数式和方程式的关系(三)例题分析:例1(1),;(2),;(3),上述三个对应(2)是到的映射例2已知集合,映射,在作用下点的象是,则集合 ( ) 解法要点:因为,所以例3设集合,如果从到的映射满足条件:对中的每个元素与它在中的象的和都为奇数,则映射的个数是 ( )8个 12个 16个 18个解法要点:为奇数,当为奇数、时,它们在中的象只能为偶数、或,由分步计数原理和对应方法有种;而当时,它在中的象为奇数或,共有种对应方法故映射的个数是例4矩形的长,宽,动点、分别在、上,且,(1)将的面积表示为的函数,求函数的解析式;(2)求的最大值解:(1),函数的解析式:;(2)在上单调递增,即的最大值为例5函数对一切实数,均有成立,且,(1)求的值;(2)对任意的,都有成立时,求的取值范围解:(1)由已知等式,令,得,又,(2)由,令得,由(1)知,在上单调递增,要使任意,都有成立,当时,,显然不成立当时,解得的取值范围是(四)巩固练习:1给定映射,点的原象是或2下列函数中,与函数相同的函数是 ( ) 3设函数,则五课后作业:高考计划考点7,智能训练5,7,9,10,13,14第2课时 函数的解析式及定义域一课题:函数的解析式及定义域二教学目标:掌握求函数解析式的三种常用方法:待定系数法、配凑法、换元法,能将一些简单实际问题中的函数的解析式表示出来;掌握定义域的常见求法及其在实际中的应用三教学重点:能根据函数所具有的某些性质或所满足的一些关系,列出函数关系式;含字母参数的函数,求其定义域要对字母参数分类讨论;实际问题确定的函数,其定义域除满足函数有意义外,还要符合实际问题的要求四教学过程:(一)主要知识:1函数解析式的求解;2函数定义域的求解(二)主要方法:1求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知求或已知求:换元法、配凑法;(3)已知函数图像,求函数解析式;(4)满足某个等式,这个等式除外还有其他未知量,需构造另个等式:解方程组法;(5)应用题求函数解析式常用方法有待定系数法等2求函数定义域一般有三类问题:(1)给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合;(2)实际问题:函数的定义域的求解除要考虑解析式有意义外,还应考虑使实际问题有意义;(3)已知的定义域求的定义域或已知的定义域求的定义域:掌握基本初等函数(尤其是分式函数、无理函数、对数函数、三角函数)的定义域;若已知的定义域,其复合函数的定义域应由解出(三)例题分析:例1已知函数的定义域为,函数的定义域为,则 ( )解法要点:,令且,故例2(1)已知,求;(2)已知,求;(3)已知是一次函数,且满足,求;(4)已知满足,求解:(1),(或)(2)令(),则,(3)设,则,(4) , 把中的换成,得 ,得,注:第(1)题用配凑法;第(2)题用换元法;第(3)题已知一次函数,可用待定系数法;第(4)题用方程组法例3设函数,(1)求函数的定义域;(2)问是否存在最大值与最小值?如果存在,请把它写出来;如果不存在,请说明理由解:(1)由,解得 当时,不等式解集为;当时,不等式解集为,的定义域为(2)原函数即,当,即时,函数既无最大值又无最小值;当,即时,函数有最大值,但无最小值例4高考计划考点8,智能训练15:已知函数是定义在上的周期函数,周期,函数是奇函数又知在上是一次函数,在上是二次函数,且在时函数取得最小值证明:;求的解析式;求在上的解析式解:是以为周期的周期函数,又是奇函数,当时,由题意可设,由得,是奇函数,又知在上是一次函数,可设,而,当时,从而当时,故时,当时,有,当时,例5我国是水资源比较贫乏的国家之一,各地采取价格调控等手段来达到节约用水的目的,某地用水收费的方法是:水费基本费超额费损耗费若每月用水量不超过最低限量时,只付基本费8元和每月每户的定额损耗费元;若用水量超过时,除了付同上的基本费和定额损耗费外,超过部分每付元的超额费已知每户每月的定额损耗费不超过5元该市一家庭今年第一季度的用水量和支付费如下表所示:月份用水量水费(元)1239152291933根据上表中的数据,求、解:设每月用水量为,支付费用为元,则有由表知第二、第三月份的水费均大于13元,故用水量15,22均大于最低限量,于是就有,解之得,从而 再考虑一月份的用水量是否超过最低限量,不妨设,将代入(2)式,得,即,这与(3)矛盾从而可知一月份的付款方式应选(1)式,因此,就有,得故,(四)巩固练习:1已知的定义域为,则的定义域为2函数的定义域为五课后作业:高考计划考点8,智能训练4,5,10,11,12,13第3课时 函数的值域一课题:函数的值域二教学目标:理解函数值域的意义;掌握常见题型求值域的方法,了解函数值域的一些应用三教学重点:求函数的值域四教学过程:(一)主要知识:1函数的值域的定义;2确定函数的值域的原则;3求函数的值域的方法(二)主要方法(范例分析以后由学生归纳): 求函数的值域的方法常用的有:直接法,配方法,判别式法,基本不等式法,逆求法(反函数法),换元法,图像法,利用函数的单调性、奇偶性求函数的值域等(三)例题分析:例1求下列函数的值域:(1); (2); (3);(4); (5); (6);(7); (8); (9)解:(1)(一)公式法(略)(二)(配方法),的值域为改题:求函数,的值域解:(利用函数的单调性)函数在上单调增,当时,原函数有最小值为;当时,原函数有最大值为函数,的值域为(2)求复合函数的值域:设(),则原函数可化为 又,故,的值域为(3)(法一)反函数法:的反函数为,其定义域为,原函数的值域为(法二)分离变量法:,函数的值域为(4)换元法(代数换元法):设,则,原函数可化为,原函数值域为说明:总结型值域,变形:或(5)三角换元法:,设,则,原函数的值域为(6)数形结合法:,函数值域为(7)判别式法:恒成立,函数的定义域为由得: 当即时,即,当即时,时方程恒有实根,且,原函数的值域为(8),当且仅当时,即时等号成立,原函数的值域为(9)(法一)方程法:原函数可化为:,(其中),原函数的值域为(法二)数形结合法:可看作求点与圆上的点的连线的斜率的范围,解略例2若关于的方程有实数根,求实数的取值范围解:原方程可化为,令,则,又在区间上是减函数,即,故实数的取值范围为:例3(高考计划考点9,智能训练16)某化妆品生产企业为了占有更多的市场份额,拟在2003年度进行一系列的促销活动经过市场调查和测算,化妆品的年销量万件与年促销费用万元之间满足:与成反比例;如果不搞促销活动,化妆品的年销量只能是1万件已知2003年,生产化妆品的固定投入为3万元,每生产1万件化妆品需再投入32万元当将每件化妆品的售价定为“年平均每件成本的150”与“年平均每件所占促销费的一半”之和,则当年产销量相等(1)将2003年的年利润万元表示为年促销费万元的函数;(2)该企业2003年的促销费投入多少万元时,企业的年利润最大?(注:利润收入生产成本促销费)解:(1)由题设知:,且时,即,年生产成本为万元,年收入为年利润,(2)由(1)得,当且仅当,即时,有最大值当促销费定为万元时,年该化妆品企业获得最大利润(四)巩固练习:1函数的值域为2若函数在上的最大值与最小值之差为2,则五课后作业:高考计划考点1,智能训练3,4,9,12,13,14第4课时 函数的奇偶性一课题:函数的奇偶性 二教学目标:掌握函数的奇偶性的定义及图象特征,并能判断和证明函数的奇偶性,能利用函数的奇偶性解决问题三教学重点:函数的奇偶性的定义及应用四教学过程:(一)主要知识:1函数的奇偶性的定义; 2奇偶函数的性质:(1)定义域关于原点对称;(2)偶函数的图象关于轴对称,奇函数的图象关于原点对称;3为偶函数4若奇函数的定义域包含,则(二)主要方法:1判断函数的奇偶性,首先要研究函数的定义域,有时还要对函数式化简整理,但必须注意使定义域不受影响; 2牢记奇偶函数的图象特征,有助于判断函数的奇偶性;3判断函数的奇偶性有时可以用定义的等价形式:,4设,的定义域分别是,那么在它们的公共定义域上:奇+奇=奇,奇奇=偶偶+偶=偶,偶偶=偶,奇偶=奇5注意数形结合思想的应用 (三)例题分析:例1判断下列各函数的奇偶性:(1);(2);(3)解:(1)由,得定义域为,关于原点不对称,为非奇非偶函数(2)由得定义域为, 为偶函数(3)当时,则,当时,则,综上所述,对任意的,都有,为奇函数例2已知函数对一切,都有,(1)求证:是奇函数;(2)若,用表示解:(1)显然的定义域是,它关于原点对称在中,令,得,令,得,即, 是奇函数(2)由,及是奇函数,得例3(1)已知是上的奇函数,且当时,则的解析式为(2) (高考计划考点3“智能训练第4题”)已知是偶函数,当时,为增函数,若,且,则 ( ) . . . . 例4设为实数,函数, (1)讨论的奇偶性; (2)求 的最小值解:(1)当时,此时为偶函数; 当时,此时函数既不是奇函数也不是偶函数(2)当时,函数,若,则函数在上单调递减,函数在上的最小值为;若,函数在上的最小值为,且当时,函数,若,则函数在上的最小值为,且;若,则函数在上单调递增,函数在上的最小值综上,当时,函数的最小值是,当时,函数的最小值是,当,函数的最小值是例5(高考计划考点3“智能训练第15题”) 已知是定义在实数集上的函数,满足,且时,(1)求时,的表达式;(2)证明是上的奇函数(参见高考计划教师用书)(四)巩固练习:高考计划考点10智能训练6五课后作业:高考计划考点10,智能训练2,3, 8,9,10,11,13第5课时 函数的单调性一课题:函数的单调性 二教学目标:理解函数单调性的定义,会用函数单调性解决一些问题三教学重点:函数单调性的判断和函数单调性的应用四教学过程:(一)主要知识:1函数单调性的定义; 2判断函数的单调性的方法;求函数的单调区间;3复合函数单调性的判断(二)主要方法:1讨论函数单调性必须在其定义域内进行,因此要研究函数单调性必须先求函数的定义域,函数的单调区间是定义域的子集; 2判断函数的单调性的方法有:(1)用定义;(2)用已知函数的单调性;(3)利用函数的导数3注意函数的单调性的应用;4注意分类讨论与数形结合的应用 (三)例题分析:例1(1)求函数的单调区间;(2)已知若试确定的单调区间和单调性解:(1)单调增区间为:单调减区间为,(2), 令 ,得或,令 ,或单调增区间为;单调减区间为例2设,是上的偶函数(1)求的值;(2)证明在上为增函数解:(1)依题意,对一切,有,即对一切成立,则,(2)设,则,由,得,即,在上为增函数例3(1)(高考计划考点11“智能训练第9题”)若为奇函数,且在上是减函数,又,则的解集为例4(高考计划考点10智能训练14)已知函数的定义域是的一切实数,对定义域内的任意都有,且当时,(1)求证:是偶函数;(2)在上是增函数;(3)解不等式解:(1)令,得,令,得,是偶函数(2)设,则,即,在上是增函数(3),是偶函数不等式可化为, 又函数在上是增函数,解得:,即不等式的解集为例5函数在上是增函数,求的取值范围分析:由函数在上是增函数可以得到两个信息:对任意的总有;当时,恒成立解:函数在上是增函数,对任意的有,即,得,即, ,要使恒成立,只要;又函数在上是增函数,即,综上的取值范围为另解:(用导数求解)令,函数在上是增函数,在上是增函数,且在上恒成立,得(四)巩固练习:1高考计划考点11,智能训练10;2已知是上的奇函数,且在上是增函数,则在上的单调性为 五课后作业:高考计划考点1,智能训练4,5, 7,8,12,13,15第6课时 反函数一课题:反函数 二教学目标:理解反函数的意义,会求一些函数的反函数;掌握互为反函数的函数图象间的关系,会利用与的性质解决一些问题三教学重点:反函数的求法,反函数与原函数的关系四教学过程:(一)主要知识:1反函数存在的条件:从定义域到值域上的一一映射确定的函数才有反函数; 2反函数的定义域、值域上分别是原函数的值域、定义域,若与互为反函数,函数的定义域为、值域为,则,;3互为反函数的两个函数具有相同的单调性,它们的图象关于对称(二)主要方法:1求反函数的一般方法:(1)由解出,(2)将中的互换位置,得,(3)求的值域得的定义域(三)例题分析:例1求下列函数的反函数:(1);(2);(3)解:(1)由得,所求函数的反函数为(2)当时,得,当时,得,所求函数的反函数为(3)由得,所求反函数为例2函数的图象关于对称,求的值 解:由得,由题知:,例3若既在的图象上,又在它反函数图象上,求的值解:既在的图象上,又在它反函数图象上,例4(高考计划考点12“智能训练第5题”)设函数,又函数与的图象关于对称,求的值解法一:由得,与互为反函数,由,得解法二:由得,例5已知函数(定义域为、值域为)有反函数,则方程有解,且的充要条件是满足例6(高考计划考点12“智能训练第15题”)已知,是上的奇函数(1)求的值,(2)求的反函数,(3)对任意的解不等式解:(1)由题知,得,此时,即为奇函数(2),得,(3),当时,原不等式的解集,当时,原不等式的解集(四)巩固练习:1设,则 2设,函数的反函数和的反函数的图象关于 ( )轴对称 轴对称 轴对称 原点对称3已知函数,则的图象只可能是 ( ) 4若与的图象关于直线对称,且点在指数函数的图象上,则 五课后作业:高考计划考点12,智能训练1,2,3,6,10,12,14第7课时 二次函数一课题:二次函数 二教学目标:掌握二次函数的概念、图象及性质;能利用二次函数研究一元二次方程的实根分布条件;能求二次函数的区间最值三教学重点:二次函数、一元二次方程及一元二次不等式之间的灵活转化四教学过程:(一)主要知识:1二次函数的解析式的三种形式:一般式,顶点式,两根式2二次函数的图象及性质;3二次函数、一元二次方程及一元二次不等式之间的关系(二)主要方法:1讨论二次函数的区间最值问题:注意对称轴与区间的相对位置;函数在此区间上的单调性; 2讨论二次函数的区间根的分布情况一般需从三方面考虑:判别式;区间端点的函数值的符号;对称轴与区间的相对位置(三)例题分析:例1函数是单调函数的充要条件是 ( ) 分析:对称轴,函数是单调函数,对称轴在区间的左边,即,得例2已知二次函数的对称轴为,截轴上的弦长为,且过点,求函数的解析式解:二次函数的对称轴为,设所求函数为,又截轴上的弦长为,过点,又过点, ,例3已知函数的最大值为,求的值 分析:令,问题就转二次函数的区间最值问题解:令,对称轴为,(1)当,即时,得或(舍去)(2)当,即时,函数在单调递增,由,得(3)当,即时,函数在单调递减,由,得(舍去)综上可得:的值为或例4 已知函数与非负轴至少有一个交点,求的取值范围解法一:由题知关于的方程至少有一个非负实根,设根为则或,得解法二:由题知或,得例5对于函数,若存在,使,则称是的一个不动点,已知函数,(1)当时,求函数的不动点;(2)对任意实数,函数恒有两个相异的不动点,求的取值范围;(3)在(2)的条件下,若的图象上两点的横坐标是的不动点,且两点关于直线对称,求的最小值解:(1),是的不动点,则,得或,函数的不动点为和(2)函数恒有两个相异的不动点,恒有两个不等的实根,对恒成立,得的取值范围为(3)由得,由题知,设中点为,则的横坐标为,当且仅当,即时等号成立,的最小值为(四)巩固练习:1若函数的图象关于对称则 6 2二次函数的二次项系数为负值,且,问与满足什么关系时,有3取何值时,方程的一根大于,一根小于五课后作业:高考计划考点13,智能训练3,5,6,9,10,12,13第8课时 指数式与对数式一课题:指数式与对数式二教学目标:1理解分数指数幂的概念,掌握有理数指数幂的运算性质;2理解对数的概念,掌握对数的运算性质三教学重点:运用指数、对数的运算性质进行求值、化简、证明四教学过程:(一)主要知识:1指数、对数的运算法则; 2指数式与对数式的互化:(二)主要方法:1重视指数式与对数式的互化; 2不同底的对数运算问题,应化为同底对数式进行运算;3运用指数、对数的运算公式解题时,要注意公式成立的前提(三)例题分析:例1计算:(1);(2); (3)解:(1)原式 (2)原式 (3)原式 例2已知,求的值解:, , 又, 例3已知,且,求的值 解:由得:,即,; 同理可得,由 得 ,例4设,且,求的最小值解:令 , 由得, ,即, , ,当时,例5设、为正数,且满足 (1)求证: (2)若,求、的值证明:(1)左边;解:(2)由得, 由得 由得 由得,代入得, 由、解得,从而 (四)巩固练习:1若,则与的大小关系为 ;2若,求的值五课后作业:高考计划考点14,智能训练4,6,10,13,14,15第9课时 指数函数与对数函数一课题:指数函数与对数函数二教学目标:1掌握指数函数与对数函数的概念、图象和性质;2能利用指数函数与对数函数的性质解题三教学重点:运用指数函数、对数函数的定义域、单调性解题四教学过程:(一)主要知识:1指数函数、对数函数的概念、图象和性质; 2同底的指数函数与对数函数互为反函数;(二)主要方法:1解决与对数函数有关的问题,要特别重视定义域; 2指数函数、对数函数的单调性决定于底数大于1还是小于1,要注意对底数的讨论;3比较几个数的大小的常用方法有:以和为桥梁;利用函数的单调性;作差(三)例题分析:例1(1)若,则,从小到大依次为 ; (2)若,且,都是正数,则,从小到大依次为 ; (3)设,且(,),则与的大小关系是 ( ) () () () ()解:(1)由得,故 (2)令,则, ,; 同理可得:,(3)取,知选()例2已知函数,求证:(1)函数在上为增函数;(2)方程没有负数根证明:(1)设,则,;,且,即,函数在上为增函数;(2)假设是方程的负数根,且,则, 即, 当时,而由知,式不成立; 当时,而,式不成立综上所述,方程没有负数根例3已知函数(且)(高考计划考点15,例4)求证:(1)函数的图象在轴的一侧; (2)函数图象上任意两点连线的斜率都大于证明:(1)由得:,当时,即函数的定义域为,此时函数的图象在轴的右侧;当时,即函数的定义域为,此时函数的图象在轴的左侧函数的图象在轴的一侧;(2)设、是函数图象上任意两点,且,则直线的斜率,当时,由(1)知,又,;当时,由(1)知,又,函数图象上任意两点连线的斜率都大于(四)巩固练习:1已知函数,若,则、从小到大依次为 ;(注:)2若为方程的解,为不等式的解,为方程的解,则、从小到大依次为;3若函数的图象与轴有交点,则实数的取值范围是五课后作业:高考计划考点15,智能训练3,5,7,10,12,15第10课时 函数的图像一课题:函数的图象二教学目标:1熟练掌握基本函数的图象;2能正确地从函数的图象特征去讨论函数的主要性质;3能够正确运用数形结合的思想方法解题三教学重点:熟练基本函数的图象并掌握图象的初等变换四教学过程:(一)主要知识:1作图方法:描点法和利用基本函数图象变换作图; 2三种图象变换:平移变换、对称变换和伸缩变换等等;3识图:分布范围、变化趋势、对称性、周期性等等方面(二)主要方法:1平移变换:(1)水平平移:函数的图像可以把函数的图像沿轴方向向左或向右平移个单位即可得到;(2)竖直平移:函数的图像可以把函数的图像沿轴方向向上或向下平移个单位即可得到2对称变换:(1)函数的图像可以将函数的图像关于轴对称即可得到;(2)函数的图像可以将函数的图像关于轴对称即可得到;(3)函数的图像可以将函数的图像关于原点对称即可得到;(4)函数的图像可以将函数的图像关于直线对称得到3翻折变换:(1)函数的图像可以将函数的图像的轴下方部分沿轴翻折到轴上方,去掉原轴下方部分,并保留的轴上方部分即可得到;(2)函数的图像可以将函数的图像右边沿轴翻折到轴左边替代原轴左边部分并保留在轴右边部分即可得到4伸缩变换:(1)函数的图像可以将函数的图像中的每一点横坐标不变纵坐标伸长或压缩()为原来的倍得到;(2)函数的图像可以将函数的图像中的每一点纵坐标不变横坐标伸长或压缩()为原来的倍得到(三)例题分析:例1(高考计划考点16“智能训练第5题”)函数与的图像如下图:则函数的图像可能是( )例2说明由函数的图像经过怎样的图像变换得到函数的图像解:方法一:(1)将函数的图像向右平移3个单位,得到函数的图像;(2)作出函数的图像关于轴对称的图像,得到函数的图像;(3)把函数的图像向上平移1个单位,得到函数的图像方法二:(1)作出函数的图像关于轴的对称图像,得到的图像;(2)把函数的图像向左平移3个单位,得到的图像;(3)把函数的图像向上平移1个单位,得到函数的图像例3(高考计划考点16“智能训练第11题”)如下图所示,向高为的水瓶同时以等速注水,注满为止;(1)若水深与注水时间的函数图象是下图中的,则水瓶的形状是 C ;(2)若水量与水深的函数图像是下图中的,则水瓶的形状是 A ;(3)若水深与注水时间的函数图象是下图中的,则水瓶的形状是 D ;(4)若注水时间与水深的函数图象是下图中的,则水瓶的形状是 B 例4设曲线的方程是,将沿轴、轴正方向分别平移、个单位长度后得到曲线,(1)写出曲线的方程;(2)证明曲线与关于点对称;(3)如果曲线与有且仅有一个公共点,证明:解:(1)曲线的方程为;(2)证明:在曲线上任意取一点,设是关于点的对称点,则有,代入曲线的方程,得的方程:即可知点在曲线上反过来,同样证明,在曲线上的点的对称点在曲线上因此,曲线与关于点对称(3)证明:因为曲线与有且仅有一个公共点,方程组有且仅有一组解,消去,整理得,这个关于的一元二次方程有且仅有一个根,即得,因为,所以例5(高考计划考点16,智能训练12)(1)试作出函数的图像;(2)对每一个实数,三个数中最大者记为,试判断是否是的函数?若是,作出其图像,讨论其性质(包括定义域、值域、单调性、最值);若不是,说明为什么?解:(1),为奇函数,从而可以作出时的图像,又时,时,的最小值为2,图像最低点为,又在上为减函数,在上是增函数,同时即以为渐近线,于是时,函数的图像应为下图,图象为图:(2)是的函数,作出的图像可知,的图像是图中实线部分定义域为;值域为;单调增区间为;单调减区间为;当时,函数有最小值1;函数无最大值(四)巩固练习:1已知函数的图像如右图所示,则( A ) 五课后作业:高考计划考点16,智能训练3, 7,9,15,16第11课时 函数的最值一课题:函数的最值 二教学目标:掌握函数最值的一般求法,并能利用函数的最值解决一些实际问题,提高分析和解决问题的能力三教学重点:函数最值的一般求法以及应用四教学过程:(一)主要知识:1函数最值的意义; 2求函数最值的常用方法:(1)配方法:主要适用于可化为二次函数或可化为二次函数的函数,要特别注意自变量的范围;(2)判别式法:主要适用于可化为关于的二次方程的函数在由且,求出的值后,要检验这个最值在定义域内是否有相应的的值;(3)不等式法:利用基本不等式求最值时一定要注意应用的条件;(4)换元法:用换元法时一定要注意新变元的取值范围;(5)数形结合法:对于图形较容易画出的函数的最值问题可借助图象直观求出;(6)利用函数的单调性:要注意函数的单调性对函数最值的影响,特别是闭区间上函数的最值(二)主要方法:1函数的最值问题实质上是函数的值域问题,因此求函数值域的方法,也是求函数的值域的方法,只是答题的方式有所差异; 2无论用什么方法求最值,都要考查“等号”是否成立,不等式法及判别式法尤其如此(三)例题分析:例1求下列函数的最大值或最小值:(1) ;(2);(3)解:(1),由得,当时,函数取最小值,当时函数取最大值(2)令,则,当,即时取等号,函数取最大值,无最小值(3)解法(一)用判别式法:由得,若,则矛盾, ,由,这时, 解得:,且当时, 函数的最大值是,无最小值解法(二)分离常数法:由, ,函数的最大值是,无最小值例2(1)函数在上的最大值与最小值的和为,则 2 (2)对于满足的一切实数,不等式恒成立,则的取值范围为(3)已知函数,构造函数,定义如下:当时,当时,那么 ( )有最小值,无最大值 有最小值,无最大值有最大值,无最小值 无最小值,也无最大值例3(高考计划考点17“智能训练第14题”)已知,若在上的最大值为,最小值为,令,(1)求的函数表达式; (2)判断函数的单调性,并求出的最小值答案参看教师用书 (四)巩固练习:1函数的最大值为 16 ;2若,则的最大值是 6 ;3若则的最小值是;4,在和 上是单调递减函数,则的最大值为五课后作业:高考计划考点17,智能训练1,3,4, 8, 10,12,13,15第12课时 函数的应用一课题:函数的应用二教学目标:1能够应用函数的性质解决有关数学问题,能够应用函数知识解决一些简单的实际问题;2培养学生的阅读能力、文字语言转化为数学语言的能力及数学建模能力三教学重点:建立恰当的函数关系四教学过程:(一)主要知识:函数的综合问题主要有如下几个方面:1函数的概念、性质和方法的综合问题;2函数与其它知识,如方程、不等式、数列的综合问题;3函数与解析几何的综合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论