学案26函数应用《函数与方程和函数模型及其应用》.doc_第1页
学案26函数应用《函数与方程和函数模型及其应用》.doc_第2页
学案26函数应用《函数与方程和函数模型及其应用》.doc_第3页
学案26函数应用《函数与方程和函数模型及其应用》.doc_第4页
学案26函数应用《函数与方程和函数模型及其应用》.doc_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2012版高三数学一轮精品复习学案:函数、导数及其应用第六节 函数应用【高考目标导航】一、函数与方程1、考纲点击(1)结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数。(2)根据具体函数的图象,能够用二分法求相应方程的近似解。2、热点提示(1)函数与方程的零点、二分法是新课标的新增内容,在近年的高考中一定有所体现。(2)本节内容多以选择题、填空题的形式出现,属中低档题,不排除与其他知识,在知识交汇处命题。二、函数模型及其应用1、考纲点击(1)了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义。(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。2、热点提示(1)函数的模型及其应用是考查重点。(2)现实生活中的生产经营、环境保护、工程建设等热点问题中的增长、减少问题,一次函数、二次函数、指数函数、对数函数模型等问题是重点,也是难点,主要考查建模能力及分析问题和解决问题的能力。(3)题型方面选择题、填空题及解答题都有所体现,但以解答题为主。【考纲知识梳理】一、函数与方程1、函数的零点(1)函数零点的定义对于函数,把使成立的实数叫做函数的零点。(2)几个等价关系方程有实数根函数的图象与轴有交点函数有零点注:函数的零点不是函数与轴的交点,而是与轴的交点的横坐标,也就是说函数的零点不是一个点,而是一个实数。并非任意函数都有零点,只有有根的函数才有零点。(3)函数零点的判定(零点存在性定理)如果函数在区间a,b上的图象是连续不断的一条曲线,并且有,那么函数在区间(a,b)内有零点,即存在c(a,b),使得f(c)=0,这个c也就是的根注:在上面的条件下,(a,b)内的零点至少有一个c,还可能有其他根,个数不确定。2、二次函数的图象与零点的关系3、二分法(1)二分法的定义对于在区间a,b上连续不断且的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。(2)用二分法求函数零点近似值的步骤第一步,确定区间a,b,验证,给定精确度;第二步,求区间(a,b)的中点;第三步,计算:若=0,则就是函数的零点;若,则令(此时零点);若,则令(此时零点);第四步,判断是否达到精确度:即若,则得到零点近似值(或);否则重复第二、三、四步。二、函数模型及其应用1、几类函数模型及其增长差异(1)几类函数模型函数模型函数解析式一次函数模型二次函数模型指数函数模型对数函数模型幂函数模型(2)三种增长型函数之间增长速度的比较指数函数与幂函数在区间上,无论比大多少,尽管在的一定范围内会小于,但由于的增长快于的增长,因而总存在一个,当时,有。对数函数与幂函数()对数函数的增长速度,不论与值的大小如何总会慢于的增长速度,因而在定义域内总存在一个实数,使时有。由可以看出三种增长型的函数尽管均为增函数,但它们的增长速度不同,且不在同一个档次上,因此在上,总会存在一个,使时有2、解函数应用问题的步骤(四步八字)(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题的意义。以上过程用图表示如下:3、解函数应用问题常见的错误:(1)不会将实际问题抽象转化为函数模型或转化不全面;(2)在求解过程中忽视实际问题对变量参数的限制条件。【热点、难点精析】(一)函数与方程1、零点的判定相关链接(1)解方程:当能直接求解零点时,就直接求出进行判断。(2)用定理:零点存在性定理。注:如果函数在a,b上的图象是连续不断的曲线,且是函数在这个区间上的一个零点,但不一定成立。(3)利用图象的交点:有些题目可先画出某两个函数,图象,其交点的横坐标是的零点。例题解析例判断下列函数在给定区间是否存在零点。f(x)=x2-3x-18,x1,8;f(x)=log2(x+2)-x,x1,3分析:第(1)问利用零点的存在性定理或直接求出零点,第(2)问利用零点的存在性定理或利用两图象的交点来求解。解答:(1)方法一:f(1)=12-31-18=-200,f(1)f(8)log22-1=0,f(3)=log25-3log28-3=0,f(1)f(3)0,故f(x)=log2(x+2)-x,x1,3存在零点。方法二:设y=log2(x+2),y=x,,在同一直角坐标系中画出它们的图象,从图象中可以看出当时,两图象有一个交点,因此f(x)=log2(x+2)-x,x1,3存在零点。2、函数零点个数的判定相关链接函数零点个数的判定有下列几种方法:直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点;零点存在性定理:利用该定理不仅要求函数在a,b上是连续的曲线,且f(a)f(b)0。还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点。画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点。 例题解析判断函数在区间上零点的个数,并说明理由。分析:求的值判断函数在上的单调性函数零点个数。解答:3、与二次函数有关的零点分布问题相关链接设是实系数一元二次方程的两实根,下面为几类常见二次函数零点分布情况需满足于的条件:根的分布(且均为常数)图象满足的条件只有一根在之间或例题解析例(1)m为何值时,f(x)=x2+2mx+3m+4有且仅有一个零点;有两个零点且均比-1大;(2)若函数f(x)=|4x-x2|+a有4个零点,求褛a 取值范围。分析:(1)二次函数结合图象求解,也可用方程思想求解;(2)利用函数图象求解。解答:(1)若函数f(x)=x2+2mx+3m+4有且仅有一个零点,则等价于=4m2-4(3m+4)=0,即4m2-12m-16=0,即m2-3m-4=0,解得m=4或m=-1方法一:方程思想若f(x)有两个零点且均比-1大,设两零点分别为x1,x2,则x1+ x2=-2m, x1x2=3m+4,故只需,故m的取值范围是方法二:函数思想若f(x)有两个零点且均比-1大,结合二次函数图象可知只需满足,故m的取值范围是。(2)若f(x)=|4x-x2|+a有4个零点,即4x-x2|+a=0有四个根,即|4x-x2|=-a有四个根,令g(x)= |4x-x2|,h(x)=-a.则作出g(x)的图象,由图象可知要使|4x-x2|=-a有四个根,则g(x)与h(x)的图象应有4个交点。故需满足0-a4,即-4a0.a 的取值范围是(-4,0)。(二)函数模型及其应用1、一次函数与分段函数模型相关链接(1)在现实生活中,有很多问题的两变量之间的关系是一次函数模型,其增长特点是直线上升(自变量的系数大于0)或直线下降(自变量的系数小于0);(2)很多实际问题中变量间的关系,不能用同一个关系式给出,而是由几个不同的关系式构成分段函数。如出租车票价与路程之间的关系,就是分段函数。(3)分段函数主要是每一段自变量变化所遵循的规律不同,可以先将其当作几个问题,将各段的变化规律分别找出来,再将其合到一起。要注意各段变量的范围,特别是端点值。例题解析例1电信局为了配合客户不同需要,设有A,B两种优惠方案这两种方案应付话费y(元)与通话时间x(分钟)之间的关系如图所示,其中MNCD.(1)若通话时间为2小时,按方案A,B各付话费多少元?(2)方案B从500分钟以后,每分钟收费多少元?(3)通话时间在什么范围内,方案B比方案A优惠?思路解析:本题是求在不同的条件下,两种方案所付话费以及话费的比较,但由于题设中以图象的形式给出两方案的付费函数,所以在解题方法上,可先求出函数的解析式,然后再求其他解解答:设这两种方案的应付话费与通话时间的函数关系为和,由图知M(60,98),N(500,230),C(500,168),MNCD;则(1)通话2小时的费用分别是116元、168元。(2)方案B从500分钟以后,每分钟收费0.3元。(3)由图知,当0x60时,;当60x500时,由得解得当x500时,。综上,通话时间在内,方案B比方案A优惠。例2我市有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同,甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.(1)设在甲家租一张球台开展活动x小时的收费为f(x)元(15x40),乙家租一张球台开展活动x小时的收费为g(x)元(15x40).试求f(x)和g(x);(2)问:小张选择哪家比较合算?为什么?【解析】(1)f(x)=5x(15x40),(2)由f(x)=g(x)得,即x=18或x=10(舍).当15x18时,f(x)-g(x)=5x-900,f(x)g(x),即选甲家;当x=18时,f(x)=g(x),即可以选甲家,也可以选乙家;当180,f(x)g(x),即选乙家;当300,f(x)g(x),即选乙家.综上所述,当15x18时,选甲家,当x=18时,可以选甲家,也可以选乙家,当18x40时,选乙家.2、二次函数与分段函数模型相关链接二次函数的应用主要有以下方面:(1)利用二次函数关系式或图象求最值.(2)利用二次函数单调性求参数取值或范围.(3)二次函数如果是分段表示,则应注意分段区间端点值的应用.(4)利用二次函数对应方程根的分布求参数范围.例1某飞机制造公司一年中最多可生产某种型号的飞机100架。已知制造x架该种飞机的产值函数为R(x)=3000x-20x2 (单位:万元),成本函数C(x)=500x+4000 (单位:万元)。利润是收入与成本之差,又在经济学中,函数(x)的边际利润函数Mx)定义为:Mx)=(x+1)-(x).求利润函数P(x)及边际利润函数MP(x);(利润=产值-成本)问该公司的利润函数P(x)与边际利润函数MP(x)是否具有相等的最大值? 解:P(x)= R(x)- C(x)= -20x2+2500x-4000 (xN*,且x1,100);MP(x)= P(x+1)- P(x)=-40x+2480(xN*,且x1,100);P(x)= -20(x-)2+74125 (xN*,且x1,100);则当x=62或63时,P(x)max=74120(元),因为MP(x) =-40x+2480为,则当x=1时,MP(x)max =2440元,故利润函数与边际利润函数不具有相等的最大值。例2北京奥运会纪念章某特许专营店销售纪念章,每枚进价为5元,同时每销售一枚这种纪念章还需向北京奥组委交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为x元。(1)写出该特许专营店一年内销售这种纪念章所获得的利润y(元)与每枚纪念章的销售价格x的函数关系式(并写出这个函数的定义域)。(2)当每纪念章销售价格x为多少元时,该特许专营店一年内利润y(元)最大,并求出这个最大值。思路解析:(1)利润=(售价-进价-管理费)(销售的纪念章数),注意价格取值是分段的;(2)分段函数求最值时,要分段求,然后比较大小。解答:(1)依题意些函数的定义域为(0,40)。(2)当0x20,则当x=16时,ymax=32400(元);当20x40,则当x=时,ymax=27225(元)。综上可得当x=16 时,该特许专营店获得的利润最大为32400元。注:分段函数是一类重要的函数,生活中很多实例都是分段函数模型,解决此类问题主要是构造分段函数,然后分步解决,构造分段函数时要力求准确、简捷,做到分段合理,不重不漏。3、指数函数模型相关链接(1)指数函数模型,常与增长率相结合进行考查,在实际问题中有人口增长、银行利率、细胞分裂等增长问题可以利用指数函数模型来表示;(2)应用指数函数模型时,关键是对模型的判断,先设定模型将有关已知数据代入验证,确定参数,从而确定函数模型.(3)y=a(1+x)n通常利用指数运算与对数函数的性质求解例题解析例1急剧增加的人口已经使我们赖以生存的地球不堪重负控制人口急剧增长的紧迫任务摆在我们的面前(1)世界人口在过去的40年内翻了一番,问每年人口平均增长率是多少?(2)我国人口在2006年底达到13.14亿,若将人口平均增长率控制在1%以内,我国人口在2016年底至多有多少亿? 以下对数值可供计算时使用:思路解析:(1)本题求每年人口增长率,但已知40年内翻一番,所以在解题方法上,可用方程的思想来解;(2)本题是计算10年后我国人口的数量,由于题设中已知10年前以及每年的增长率,所以在解题方法上,可先找到函数关系,直接计算求解解答:(1)设每年人口平均增长率为x,n年前的人口数为a,n年后的人口数为y,则y=a(1+x)n,依题意得:2a=a(1+x)40,即2=(1+x)40,两边取对数得,lg2=40lg(1+x),则lg(1+x)=0.007 525,所以1+x1.017,得x0.017,故每年的人口平均增长率约是1.7%.(2)依题意得y13.14(1+1%)10,两边取对数得,lgylg13.14+10lg(1+1%)1.161 6,y14.51,故2 016年至多有人口14.51亿.例2某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答下面的问题:(1)写出该城市人口总数y(万人)与年份x(年)的函数关系式;(2)计算10年以后该城市人口总数(精确到0.1万人);(3)计算大约多少年以后该城市人口将达到120万人(精确到1年)。(101210=1127,1.01215=1.196,1.01216=1.210)思路解析:列出前几年该城市人口总数y与年份x的函数关系观察规律,总结出y与x的函数关系按要求求解(2)、(3)两小题解答:(1)1年后该城市人口总数为y=100+1001.2%=100(1+1.2%),2年后该城市人口总数为y=100(1+1.2%)+100(1+1.2%)21.2%=100(1+1.2%)2同理,3年后该城市人口总数为:y=100(1+1.2%)3X年后该城市人口总数为y=100(1+1.2%)x(xN).(2)10年后人口总数为100(1+1.2)10112.7(万)(3)设x年后该城市人口将达到120万人,即100(1+1.2%)x=120,x=log1.0121.2016(年)。因此,大约16年以后城市人口将达到120万人。注:高考数学试题中联系生活实际和生产实际的应用问题,其创意新颖,设问角度独特,解题方法灵活,一般文字叙述长,数量关系分散且难以把握。解决此类问题关键要认真审题,确切理解题意,进行科学的抽象概括,将实际问题纳为相应的数学问题,然后利用函数、方程、不等式等有关知识解答。【感悟高考真题】1、(2011福建卷文科6)若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是( )(A). (-1,1) (B). (-2,2) (C). (-,-2) (2,+) (D).(-,-1)(1,+)【思路点拨】方程x2+mx+1=0若有两个不相等的实数根,需满足其判别式,由此即可解得的取值范围.【精讲精析】选C. 方程有两个不相等的实数根,需判别式,解得或.2、(2011新课标全国高考文科10)在下列区间中,函数的零点所在的区间为( )A. B. C. D. 【思路点拨】结合函数的单调性,将4个选项中涉及的端点值代入函数的解析式,零点所在的区间必在使得端点函数值异号的区间内.【精讲精析】选C 是上的增函数且图象是连续的,又,定在内存在唯一零点.3、(2011陕西高考理科T6)函数在内 ( )(A)没有零点 (B)有且仅有一个零点(C)有且仅有两个零点 (D)有无穷多个零点【思路点拨】利用数形结合法进行直观判断,或根据函数的性质(值域、单调性等)进行判断。【精讲精析】选B (方法一)数形结合法,令,则,设函数和,它们在的图象如图所示,显然两函数的图象的交点有且只有一个,所以函数在内有且仅有一个零点;(方法二)在上,所以;在,所以函数是增函数,又因为,所以在上有且只有一个零点4、(2011山东高考文科16)已知函数=当2a3b4时,函数的零点 .【思路点拨】由条件易知函数f(x)在(0,+)上为增函数,然后利用函数的零点存在定理求出函数的零点所在区间.【精讲精析】因为函数在(0,上是增函数,即.5、(2010湖北理数)17(本小题满分12分) 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。()求k的值及f(x)的表达式。()隔热层修建多厚时,总费用f(x)达到最小,并求最小值。思路解析:本小题主要考查函数、函数等基础知识,同时考查运用数学知识解决实际问题的能力.解答:(I)设隔热层厚度为xcm,由题设,每年能源消耗费用为.再由C(0)=8,得k=40,因此,而建造费用为.最后得隔热层建造费用与20年能源消耗费用之和为(II)【考点精题精练】一、选择题1、若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:f(1)=-2f(1.5)=0.625f(1.25)=-0.984f(1.375)=-0.260f(1.438)=0.165f(1.4065)=-0.052那么方程x3+x2-2x-2=0的一个近似根(精确到0.1)为( C ) A、1.2 B、1.3 C、1.4 D、1.52、若函数在区间a,b上的图象为连续不断的一条曲线,则下列说法正确的是( D )A若,不存在实数使得;B若,存在且只存在一个实数使得;C若,有可能存在实数使得; D若,有可能不存在实数使得;解析:由零点存在性定理可知选项D不正确;对于选项B,可通过反例“在区间上满足,但其存在三个解”推翻;同时选项A可通过反例“在区间上满足,但其存在两个解”;选项D正确,见实例“在区间上满足,但其不存在实数解”3、关于“二分法”求方程的近似解,说法正确的是(D)A“二分法”求方程的近似解一定可将在a,b内的所有零点得到;B“二分法”求方程的近似解有可能得不到在a,b内的零点;C应用“二分法”求方程的近似解,在a,b内有可能无零点;D“二分法”求方程的近似解可能得到在a,b内的精确解;解析:如果函数在某区间满足二分法题设,且在区间内存在两个及以上的实根,二分法只可能求出其中的一个,只要限定了近似解的范围就可以得到函数的近似解,二分法的实施满足零点存在性定理,在区间内一定存在零点,甚至有可能得到函数的精确零点。4、若函数的零点与的零点之差的绝对值不超过0.25, 则可以是A. B. C. D. 答案 A解析 的零点为x=,的零点为x=1, 的零点为x=0, 的零点为x=.现在我们来估算的零点,因为g(0)= -1,g()=1,所以g(x)的零点x(0, ),又函数的零点与的零点之差的绝对值不超过0.25,只有的零点适合,故选A。5、某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3 000+20x-0.1x2(0x240,xN),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是( )(A)100台 (B)120台 (C)150台 (D)180台【解析】选C.要使生产者不亏本,则有3 000+20x-0.1x225x,解上式得:x-200或x150,又0x240,xN,x的最小值为150.6、(2011北京模拟)如图所示,一质点P(x,y)在xOy平面上沿曲线运动,速度大小不变,其在x轴上的投影点Q(x,0)的运动速度V=V(t)的图象大致为( )【解析】选B.由图可知,当质点P(x,y)在两个封闭曲线上运动时,投影点Q(x,0)的速度先由正到0、到负数,再到0,到正,故A错误;质点P(x,y)在终点的速度是由大到小接近0,故D错误;质点P(x,y)在开始时沿直线运动,故投影点Q(x,0)的速度为常数,因此C是错误的,故选B.7、(2011济南模拟)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是( )【解析】选A.从汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,可比较图象中所反映的速度,速度是由慢到快,再到匀速,最后到减速,所以A选项正确.8、某商店已按每件80元的成本购进某商品1 000件,根据市场预测,销售价为每件100元时可全部售完,定价每提高1元时销售量就减少5件,若要获得最大利润,销售价应定为每件( )(A)100元 (B)110元 (C)150元 (D)190元【解题提示】关键将利润表示为提高售价x元的函数.【解析】选D.设售价提高x元,则依题意y=(1 000-5x)(20+x)=-5x2+900x+20 000=-5(x-90)2+60 500.故当x=90时,ymax=60 500,此时售价为每件190元.9、(2011淄博模拟)某文具店出售羽毛球拍和羽毛球,球拍每副定价20元,羽毛球每个定价5元,该店制定了两种优惠方法:买一副球拍赠送一个羽毛球;按总价的92%付款.现某人计划购买4副球拍和30个羽毛球,两种方法中,更省钱的一种是( )(A)不能确定 (B)同样省钱(C)省钱 (D)省钱【解析】选D.方法用款为420+265=80+130=210(元)方法用款为(420+305)92%=211.6(元)210211.6,故方法省钱.10、在一次数学试验中,采集到如下一组数据:则x,y的函数关系与下列哪类函数最接近?(其中a,b为待定系数)( )(A)y=a+bx (B)y=a+bx(C)y=ax2+b (D)y=a+【解题提示】先观察两组数据的关系,然后代入选项后验证即可.【解析】选B.由表格数据逐个验证,知模拟函数为y=a+bx.11、方程lgx+x=3的解所在区间为( C )A(0,1) B.(1,2) C(2,3) D(3,+)解析:在同一平面直角坐标系中,画出函数y=lgx与y=-x+3的图象(如图)。它们的交点横坐标,显然在区间(1,3)内,由此可排除A,D至于选B还是选C,由于画图精确性的限制,单凭直观就比较困难了。实际上这是要比较与2的大小。当x=2时,lgx=lg2,3-x=1。由于lg21,因此2,从而判定(2,3),故本题应选C。12、国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800元而不超过4 000元的按超过800元部分的14%纳税;超过4 000元的按全部稿酬的11%纳税.已知某人出版一本书,共纳税420元,这个人应得稿费(扣税前)为( )(A)2 800元 (B)3 000元(C)3 800元 (D)3 818元【解题提示】由题意写出分段函数的解析式,然后由函数值求自变量的值.解答:选C.设扣税前应得稿费为x元,则应纳税额y为分段函数,由题意,得如果稿费为4 000元应纳税为448元,现知某人共纳税420元,所以稿费应在8004 000元之间,(x-800)14%=420,x=3 800.二、填空题1、一种产品的成本原为a元,在今后的m年内,计划使成本平均每年比上一年降低p%,成本y是经过年数x(0xm)的函数,其关系式y=f(x)可写成_.【解析】依题意有y=a(1-p%)x(0xm).答案:y=a(1-p%)x(0xm)2、某出租车公司规定乘车收费标准如下:3公里以内为起步价8元(即行程不超过3公里,一律收费8元);若超过3公里,除起步价外,超过的部分再按1.5元/公里计价;若司机再与某乘客约定按四舍五入以元计费不找零钱已知该乘客下车时乘车里程数为7.4公里,则该乘客应付的车费为_.【解析】依题意得,实际乘车车费为:8+1.5(7.4-3)=14.6,应付车费15元.答案:15元3、(2011焦作模拟)计算机的价格大约每3年下降,那么今年花8 100元买的一台计算机,9年后的价格大约是_元.【解析】设计算机价格平均每年下降p%,由题意可得=(1-p%)3,p%=1-,9年后的价格y=8 1001+-19=8 100()3=300(元).答案:3004、如图所示,向高为H的水瓶A,B,C,D同时以等速注水,注满为止:(1)若水深h与注水时间t的函数图象是下图中的a,则水瓶的形状是_;(2)若水量v与水深h的函数图象是下图中的b,则水瓶的形状是_;(3)若水深h与注水时间t的函数图象是下图中的c,则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论