




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数字化制造的效益将DELMIA解决方案运用于与投资,并取得效益和一定投资回报率的研究报告报告。摘要:在这份研究报道中,CIMdata公司证实数字化制造技术是如今制造业的一个重要组成部分,提供给OEM最合适的方案,以实现真正意义的成本最低化。这份报告得出的结果,是基于对数字化制造技术价值的研究。 CIMdata公司所获得的信息是以DELMIA解决方案的成功实施为基础,在汽车,航空航天公司,以及在美国,欧洲,日本造船工业取得的实实在在的效益而总结出来的。CIMdata公司的结论是,数字化制造中,DELMIA提供的软件核心是为公司节省时间,降低成本,优化其投资回报率。关键词:数字化工厂,真正的效益,投资案例汇编概述数字化制造是一个新兴的软件技术,已成为管理或PLM产品生命周期管理的关键组成部分。这是一个在产品初期用来模拟和优化制造工艺,管理制造过程信息,并支持工程学科之间的有效合作,采用全数字化产品和工厂布局规划的模拟数字技术。它促进了一个不可分割的产品生命周期中产品和工艺设计的整体规划,使产品在设计过程中的制约因素和生产能力清楚显现出来。数字化制造支持工艺规划,建模,可视化和协同作业,仿真操作,人机工程的分析,并提供其他必要的工具,开发和优化生产工艺设计。主要包括几个软件支持功能模块,具体如下:制造业设计数据的的转化工艺规划生产作业规划以及加工工艺规程装配的定义和顺序详细的线,点,位置,以及工作内容设计质量,计量和报告制造文档编制,车间指令和协作它通常以降低风险,提供虚拟工厂展现,建立概念验证,部署机械设备,验证之前设计的生产过程,减少占地面积和设备的重新设计,在真正投产之前找出瓶颈,碰撞干涉,和人机问题,提高资源利用率,机械设备动作的协调,消除潜在技术问题,减少返修或报废。数字化制造解决方案供应商往往结合个别特殊要求提供完整的产业导向解决方案的制造业务。目前,完整的解决方案中最常用的是,自动化中的“白车身”和汽车装配流程,但数字化解决方案也正在应用于汽车动力传动系统,机身组装,造船装配,以及电控系统。调研 CIMdata的白皮书是在子公司达索系统的DELMIA公司赞助的研究基础之上提出的。 CIMdata公司获得的信息是在汽车公司,航空航天公司,以及在美国,欧洲,日本造船工业公司在内的12家公司,应用数字化制造取得的效益的基础上总结出的。在DELMIA,用户会议,提交的材料是通过个人访谈,调查问卷获得的。绝大多数的公司对信息的真实性是毋庸置疑的。虽然统计数据是在一个相对有限的反馈的基础上得出的,但是CIMdata对得出的结论是很有信息的,即在评估效益,以及在这个文件中提出的数字化制造的预期投资回报率是合理的。调查结果 最显着的数字化制造实现,在早期阶段,主要是汽车和航空航天公司。正因为如此,少数公司并不对他们的投资期待有高的回报。然而,所有的响应调查的用户表示,他们都达到或超过他们最初的目标和数字化制造预期的好处。总体而言,用户非常满意这项技术。 整个设计和制造过程中,用户从他们的投资中得到了实质性的,大量的,定量和定性的效益。在某些情况下,数字化制造技术,帮助一些组织机构完成了从某种意义上不可能完成的任务任。例如,一个用户说:“我们在生产航天器的过程中,如果没有数字化制造软件是不可能完成。”在某些情况下,在特定任务上花的成本或时间正在大量的减少。 基于这些有限成功事例的总结,采用数字化制造技术的组织可以期望更高的投资回报率。经验表明,用户可以期望每年5至10倍的年度投资回报。在一个案例中,美国海军的公开报道,巴斯钢铁厂由于在建模与仿真过程和其他创新设计过程中使用数字化技术,在水面舰艇设计这个项目中,在所有预算成本中节约了370多万美元。 平均而言,使用数字化制造技术的组织,可以缩短进入市场的交货时间30,减少设计过程中变更的次数65和减少在生产规划过程中花费的时间40。生产吞吐量可以增长15,整体生产成本可减少13。数字化制造通常在于大型的,复杂的,或困难的环境中可以实现最大的收获。为了实现数字化的最大效益,数字化制造软件应该实施一种端对端的,全面集成的,PLM解决方案。它应根据进程的方向,包括重整进程作为软件实施的一部分。如果它是作为独立的单点解决方案实施,那么得到的只能是较低的回报率。 显而易见,该技术是很可靠的,公司可以得到丰厚的投资效益和回报。当一个企业具有愿景,战略,广泛而有效的自动化制造业务和管理的信念时,实施起来是最成功的。 CIMdata公司认为,数字化制造是,为寻求建立一个在激烈竞争的全球制造业市场中,争取领导地位的企业提供所需的核心技术。这是一个PLM的重要组成部分,也是公司数字化规划和验证生产工艺的可行技术手段。效益产品和工具的设计 在产品和工具的设计过程中,应用数字化制造技术的用户可以大量的减少设计变更次数,提高交流和协同作业的成效,在工装设备设计,以及在整个产品设计过程中可以大大的缩减设计的周期。在数字化制造与设计中往往结合软件进行,如CATIA,在设计的过程中借助数字化模型板块进行设计。图1概括了我们的样本平均提高百分之报道。图一 使用数字化制造技术,企业可以大大减少设计变更的次数。通过仿真,设计者可以看到一个产品是如何在生产过程中进行实际的组装的。他们可以反复探索修改设计方案,并评估对生产效益的影响。这能让设计师尽早的发现制造过程中潜在的问题。随着产品投入实际生产的规模程度的加深,那么设计变更带来的经济损失会急剧增加,因此,早期的的这些虚拟变更直接会导致以后巨大的经济损失。此外,更多的设计迭代可以在较短的时间完成,使企业生产更高质量的产品。其中一个用户评论说,“随着数字化制造,利益主要源于更有效的产品规划和创新设计”。 在工具设计过程中,节约的成本主要是制造环境在数字化虚拟环境中呈现的结果。这种改善提高后的虚拟化呈现技术能让设计者更清楚的明白,什么样的工具是最适合产品的。此外,这种数字化技术能让产品或工具设计者在制造工艺和方法方面更加的有效率。工艺规划 工艺规划是制造业中能够达到高效生产的关键。从过去看,制造过程规划手册,主要基于以前规划者积累的经验和知识。他们通常在产品进行之后才进行相应的工艺的规划。这种有先后顺序方法具有明显的弱点,因此并行工程应运而生,使产品和工艺规划同时进行。大多数数字化制造技术组成模块都围绕这个核心制造过程中的作用而设计。软件设计工具中,如DELMIA,工艺工程师,支持在并行工程环境的工艺规划。图2基于CIMdata的研究,概括了使用数字化制造软件支持端口并行工程所取得的主要成效。 图二(成本节约15% ,时间节约40%)使用数字化制造软件支持同步工程的产品和工艺设计,能显著的降低生产规划所需的时间。为实现降低生产规划所需时间这一目标,需要技术和业务流程共同改进与提升。这些措施包括使用一个更加系统化和结构化的方法,引进过程自动化,提高可视化和协作,对生产过程进行仿真模拟。通过访问共享数据,信息搜索时间可减少多达80。使用数字化技术能使产品和工艺规划者尽早的得到反馈,减少解决问题所需的时间。一位用户说:“因为数字化技术,问题的解决,从一周减少到了两天。” 数字化制造固有的优势就是对工艺规程的建立以及对工艺过程的验证。通过数字化建模和工艺规程,用户可以在数字化制造业务的基础上进行工艺仿真。利用仿真,用户可以在可视化基础上分析验证其生产过程操作是否如计划的那样。并且任何潜在的不合理之处和低效率的规划都可以得到及时的发现和纠正。从仿真总结出的经验,可以被纳入一套体系,供日后在类似的情况下使用。这些宝贵的经验可以确保类似情形下采取的方法是最佳的。最佳的方法可以确保产品的高质量,并能显著降低工艺规划时间。 现在DELMIA公司,就在协助用户建立和实施基于最佳实践的制造工艺。业务规划和生产 数字化制造的实施最典型的优势就在于产品的规划和生产。生产线建模与仿真的装配业务,可以使企业实现大幅度的改善。例如,模拟可以帮助减少碰撞和装配问题。虚拟碰撞可以检测出用户在真正进行生产时的碰撞干涉问题。模拟装配业务,可以帮助验证或更改操作序列,以提高营运效率。 在汽车组装过程中,生产负荷可以通过多个组装工位实现线平衡。在传统的方法上,公司生产单一类型车型时,采用专用的生产线进行生产。如今,一些汽车制造商使用这些制造仿真工具,以帮助设计在一个单一的装配生产线,逐渐开始生产多种车辆类型。这增加了灵活性,在装配上大有好处。例如,企业可以及时的在现有生产线的基础上进行调整满足新要求。此外,还可以减小生产线长度,减少占地空间和提高工人效率。 建立焊接点以及焊钳的数量多少在自动化“白车身”制造过程中尤为重要。使用传统的方法,确定焊钳能否达到焊接点一直是一项耗时的工作。数字化制造软件,可以自动完成这一任务。在确定所需焊钳数量时,一个用户说,“通过模拟,焊钳的数量从180减少到不到20。”随着工厂模型和过程可视化,用户可以提高工厂通信布局。在开始生产之前,通过验证,可以确定最终的生产线布局。这些软件工具,也可以将其装配的工人纳入其中的一个模拟部分,利用人机工程原理使公司获得更高的利益回报。作为一个用户评论说,“我们用仿真对现有的生产线布局进行模拟。我们发现了更高效的方法,可以提高一倍的输出减少一半的空间。”事实结果 总体而言,企业可以得到实实在在的好处,从总的数字化进程,终端对终端的集成的PLM解决方案,包括重新对管理模块的建立。基于 CIMdata的研究结果,图3显示结果可以看出,可以缩减上市时间30%,提高生产吞吐量15%,并降低生产成本13% 。图3数字化制造的成功,关键在于全面整合,工艺流程优化工程,和世界各地的数据共享。从单一角度出发解决问题的方案是事倍功半的。企业可以从检验生产过程中的重要因素,并且对其进行重新规划中取得巨大的经济利益。其中一个人说,“随着数字化制造和工艺流程再造,我们从13周的生产周期缩减到10周的周期。” 通过提前的虚拟校验仿真分析,物理原型可能不再需要。通过更好地利用资源和提高物流,产量可以大幅提升。其中一个大汽车制造商的经理评论说,“由于数字化制造和相关标准的实施,我们削减了40的生产时间,整体生产成本降低13。”反馈企业通过对数字化软件的应用,取得了丰厚的回报。总而言之,上面提到的获得的利益都是非常巨大的,结合具体的实际情况,投资会带来丰厚的利润。早期的数字化制造,成本通常控制在十万到三十万美元的范围,大多数公司开始都是将这项技术应用于航天事业。然而,他们中的如大多数做得越来越大。基于数字化制造的经验,一位应用过此项技术的人说“一个拥有五十人的团队(花费在五百至一千万之间),记住软件,投资五百万美元,可以获得五千到一个亿的回报”这是上年度的投资回报的十倍。这个用户的评判被用来作为对大投资项目的ROI评估。 图4列出了CIMdata的投资估计为小型,中型和大型的实现回报。 CIMdata得出结论,认为利用数字化技术取得大量定性定量的效益,在早期的预计当中是合理的。当组合实施流程再造工程,数字样机,并作为一个综合的PLM解决方案的一个组成部分,那么取得五至十倍的投资回报是很现实的。 图4(小规模投资可期待回报率为投资的5倍,中等规模投资为8倍,大规模投资为10倍)The Benefits of Digital ManufacturingAn independent report on achieved benefits and return on investments with DELMIA solution.Copyright CIMdata, IncAll rights reserved. No part of the contents of the CIMdata reportmay be reproduced without prior written permission of CIMdata.Copyright DELMIA Corp. All rights reserved. “The Benefits ofDigital Manufacturing” reproduced with permission of CIMdata.MARCH 2003Abstract: In this independent survey conducted by CIMdata confirmed that the digital manufacturing technology is a key component for todays manufacturing industry, thus providing OEMs the proper tools to achieve real savings. The results within this report are based on research conducted on the value the digital manufacturing technology. The information obtained by CIMdata is based on real benefits achieved from successful implementations of DELMIA solutions at companies in the automotive, aero-space, and shipbuilding industries in the United States, Europe, and Japan. CIMdata concluded that the digital manufacturing software provided by DELMIA, is a core technology that is desired by companies seeking to save time, reduce cost, and optimize their return on investment.Keywords: Digital manufacturing, real benefits, investmentThe ReportOverview Digital manufacturing is an emerging soft-ware technology that has become a key component of Product Lifecycle Management or PLM. It is an initiative to define and optimize manufacturing processes, manage manufacturing process information, and support effective collaboration among engineering disciplines by using full digital product and plant definition. It facilitates a holistic view of product and process design as integral components of the overall product lifecycle, and enables product design to be sensitive to process constraints and capabilities.Digital manufacturing supports process planning, factory modeling, visualization and collaboration, simulation of operations, ergonomic and human factor analysis, and provides other tools necessary to develop and optimize the manufacturing process design. It includes software support for several functional areas, including: Translation of design data to manufacturing Process planning Production operations planning and machining process planning Assembly definition and sequencing Detailed line, cell, station, and task design Quality measurement and reporting Manufacturing documentation, shop floor instruction, and collaboration It is typically implemented to mitigate risk, provide virtual plant tours, establish proof of concept, deploy machinery sooner, validate processes before release to manufacturing, reduce floor space and redesign of equip-ment, identify bottlenecks, collisions, and worker issues before they happen, improve resource utilization, program machines and cells offline, eliminate prototypes, and reduce rework or scrap.Digital manufacturing solution providers often combine individual functional capabilities to provide full industry-oriented solutions for manufacturing operations. Currently, full solutions are most commonly employed in auto-motive body in white and automotive assembly operations, but solutions are also being implemented for automotive power-train, airframe assembly, shipbuilding assembly, and electronics.Research This CIMdata white paper is based on research sponsored by DELMIA Corporation, a subsidiary of Dassault Systmes. CIMdata obtained information on benefits achieved from digital manufacturing implementations at twelve companies in the automotive, aero-space, and shipbuilding industries in the United States, Europe, and Japan. The information, considered confidential by most companies, was obtained using a combination of personal interviews, responses to a survey questionnaire, use of material presented at a DELMIA User Conference, and review of public documents. Although the statistical data is based on a relatively limited set of responses, CIMdata is confident that the conclusions drawn, estimated benefits, and expected return on investment in digital manufacturing presented in this document are valid.Observations Most of the significant digital manufacturing implementations have been in major automotive and aerospace companies and are in the early stages. As such, a few companies are not yet beginning to receive a return on their investment. However, all users responding to the survey stated they are achieving or exceeding both their initial objectives and the benefits expected from digital manufacturing. Overall, users are very satisfied with this technology.Throughout the design and manufacturing process, users are deriving substantial quantitative and qualitative benefits from their investment. In some cases, digital manufacturing technology is helping organizations complete tasks that could not other-wise be accomplished. For example, one user stated that, Elements of a spacecraft that we produce could not have been completed without digital manufacturing software. In some cases, the cost or time associated with a specific task is being reduced by orders of magnitude.Based on results from this limited sample, organizations adopting digital manufacturing technologies can expect an exceedingly high rate of return on their investment. Experience shows that users can expect annual returns of 5 to 10 times their annual investment. In one case, the U.S. Navy publicly reported that modeling and simulation processes and other innovations used during design by Bath Iron Works contributed to over $370 million in total cost of ownership savings on a surface ship program.On average, organizations using digital manufacturing technologies can reduce lead time to market by 30 percent, the number of design changes by 65 percent, and time spent in the manufacturing planning process by 40 percent. Production throughput can be increased by 15 percent, and overall production costs can be cut by 13 percent.The greatest gains in digital manufacturing are typically achieved in large scale, complex, and/or difficult environments. To gain maxi-mum benefit, digital manufacturing software should be implemented as a component in an end-to-end, comprehensively integrated PLM solution. It should be based on a process orientation and include re-engineering of processes as part of the software implementation. If it is implemented as stand-alone point solutions, significantly lower payback can be expected.It is clear that the technology is solid, and organizations are achieving substantial benefits and return on investment. Implementations are most successful when there is a corporate vision, strategy, and management commitment to widespread and effective automation of manufacturing operations. CIMdata believes that digital manufacturing is a required core technology for those companies seeking to establish a leadership position in the highly competitive worldwide manufacturing marketplace. It is an essential component of PLM and an enabling technology for firms to digitally plan and validate production processes.The BenefitsProduct and Tool Design Within product and tool design, users of digital manufacturing technologies can expect a substantial reduction in the number of design changes, greater effectiveness in communications and collaboration, a savings in tool design, and a reduction in overall product design time. Digital manufacturing is often implemented in conjunction with design soft-ware such as CATIA, wherein the design sys-tem is employed for digital mockup. Figure 1 summarizes the average percent improvement reported by our sample firms. Figure 1Using digital manufacturing technologies, organizations can dramatically reduce the number of design changes. Through simulation, designers can see how a product is to be produced and assembled prior to actual physical production. They can explore design alternatives and assess impacts on production effectiveness. This permits designers to detect potential problem areas earlier in the process. Since the cost of design changes increases dramatically as a product moves further into production, these early virtual changes can result in significant cost avoidance. Further, more design iterations can be made in a shorter time, enabling firms to pro-duce higher quality products. As one user commented, With digital manufacturing, benefits were obtained from more effective product planning and increased innovations.Tool design savings result from using digital representations of the part in the manufacturing environment. This improved visualization permits tool designers to more clearly under-stand the tools required for production. Moreover, the solution supports more effective training of both product and tool design-ers on manufacturing processes and methods.Process Planning Process planning is critical to effective manufacturing operations. Historically, manufacturing process planning was manual, based primarily on the experience and knowledge of individual process planners. They typically developed manufacturing process plans after product planning. The failings of this sequential approach contributed to the advent of concurrent engineering, where product and process planning could occur in tandem. Most digital manufacturing technology suites are built around this core manufacturing process function. Software tools, such as the DELMIA Process Engineer, support process planning in a concurrent engineering environment. Based on CIMdatas research, Figure 2 summarizes the key benefits achieved from using digital manufacturing software to sup-port concurrent engineering.Figure 2Using digital manufacturing software to sup-port coincident product and process design significantly reduces the time required for manufacturing planning. Achieving this benefit requires both technology and business process improvements. These include using a more systematic and structured approach, introducing process automation, improving visualization and collaboration, and enabling manufacturing operation simulation. By having access to shared data, the information search time can be reduced by as much as 80 percent. Product and process planners get feedback much earlier, reducing the time required for problem resolution. One user stated that because of digital representation, problem resolution was reduced from one week to two days.An inherent benefit of digital manufacturing is to establish proof of concept and validate processes. By digital modeling and process planning, users can define digital manufacturing operations as a basis for process simulation. With simulation, a user can both visually and analytically verify that a manufacturing operation will perform as planned. Any potential mishaps or inefficiencies can be quickly discerned and corrected.The lessons learned from process simulations can be incorporated into a set of best practice processes for subsequent re-use in similar situations. Using these verified processes assures that the most appropriate methodology is being employed. Best practice procedures provide consistency and improved product quality, and can significantly reduce process planning time. Firms such as DELMIA now assist users in establishing and implementing manufacturing processes based upon best practices.Operations Planning and Production The implementation of digital manufacturing typically results in substantial benefits in operations planning and production. Organizations can achieve substantial improvements by modeling the shop floor and simulating production and assembly operations. For example, simulation can help minimize collision and assembly problems. Collisions can be detected and users can assess whether an assembly will fit together before it is physically attempted. Simulating assembly operations can help validate or change operation sequences to improve operating efficiency.In automotive assembly, the production load can be leveled across multiple assembly lines. In the traditional method, firms produced a single vehicle type in a batch mode on dedicated lines. Today, some automobile manufacturers use these manufacturing simulation tools to help plan the production of multiple vehicle types, one by one, on a single assembly line. This added flexibility results in major benefits in assembly. For example, companies can meet production requirements on a timelier basis. In addition, they can often shrink the size of the line, reducing floor space and increasing worker efficiency.Establishing weld points and the number of welding guns required is one of the key operations in automotive body in white operations. Using traditional methods, determining if weld points can be reached by a gun has been a time consuming task. Digital manufacturing software can automate this task. In determining the number of guns required, one user stated that, through simulat
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设施农种植管理办法
- 规范生物质管理办法
- 中华寿桃病虫管理办法
- 装修人员平台管理办法
- 《流动资金管理办法》
- 装修预算公司管理办法
- 中山公园摆摊管理办法
- 2025年环形磁体合作协议书
- 老虎潭水库管理办法
- 《医学装备管理办法》
- 海门市小升初历年数学试卷
- 2025-2030中国天然气汽车行业发展分析及发展前景与趋势预测研究报告
- 2025年辅警招聘考试试题库附完整答案(历年真题)
- 痔疮病人护理课件
- 2025至2030中国5G毫米波设备行业项目调研及市场前景预测评估报告
- 现代教育技术说课
- 部编版五年级上册语文单元教学计划
- 产品经理绩效管理制度
- 2025年烟台市中考历史试卷真题(含答案)
- 2025四川产业振兴基金投资集团有限公司招聘12人笔试参考题库附带答案详解析集合
- 风湿免疫病患者结核病诊治及预防实践指南(2025版)解读课件
评论
0/150
提交评论