振动学系列(Vibration)6._Base_Excitation.doc_第1页
振动学系列(Vibration)6._Base_Excitation.doc_第2页
振动学系列(Vibration)6._Base_Excitation.doc_第3页
振动学系列(Vibration)6._Base_Excitation.doc_第4页
振动学系列(Vibration)6._Base_Excitation.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

6. Base ExcitationNow that we can find the FRF for a mass/spring/damper system, let us tackle something slightly more complicated:Here, the system is excited by movement in the base, y(t). This is analagous to a car driving down the road bumps in the road cause the contact patch of the tire to move up and down. These vibrations are transmitted through the suspension into the chassis.First, let us draw a free-body diagram of the systemfk=kx-yfc=kx-ymx=-fk-fcmx+cx-y+kx-y=0mx+cx+kx=cy+kyNow, let us assume that the base excitation is harmonicy=Yejty=jYejtalso, letx=Xejtx=jXejtx=-2XejtThen-m2Xejt+jcXejt+kXejt=jcYejt+kYejtFactoring out the exponential gives-m2+jc+kX=jc+kYXY=jc+k-m2+jc+kThis function is similar in form to the FRF found earlier, and is in fact another type of FRF.XY=output displacementinput displacement=displacement transmissibilityX/Y is a measure of how much motion we get for a given input motion at the base. You can see by this example that the complex exponential method is very powerful and simple to use.Measurement DevicesWe turn now to a practical application of some of this theory. Assume that we have a device as shown below:The device produces a voltage proportional to the movement of the mass relative to the base.voutx-yDefinez=x-yThen the equation of motion derived earlier becomesmx+cx-y+kx-y=0mz+y+cz+kz=0mz+cz+kz=-myAssume as beforez=Zejtz=jZejtz=-2Zejtalso, let us assume thaty=AbaseejtThen-m2Zejt+jcZejt+kZejt=-mAbaseejt-m2+jc+kZ=-mAbaseZ=-Abase-2+jcm+n2If n, thenZ2Y-2=YThus, the output is proportional to the displacement we have created a seismometer!Example Base Excitation Problem (Problem 2.43 in text)A very common example of base motion is the single-degree of freedom model of an automobile driving over a road or an airplane taxiing over a runway, indicated in the figure above. The road surface is approximated as sinusoidal in cross-section providing a base motion displacement ofyt=0.01msinbtWe will examine two cars: one with a mass of 1007kg (sports car) and the other with a mass of 1585kg (sedan). Both cars have a suspension stiffness of 40kN/m and a damping coefficient of 2000kg/s1. Determine the effect of speed on the amplitude of displacement. .2. At what speed do the cars experience resonance?3. What is the displacement of each car at resonance?1. Effect of speed on amplitudeThe car encounters a bump every 6m. The frequency at which it encounters bumps can be calculated asfb=v6mif v is in m/s. To express v in km/hr we must do a little unit conversionfb=vkmhr6m1000m1km1hr3600s=0.046vHzTo convert this into rad/s, we multiply by 2b=0.291vradsEarlier in the notes we derived an expression for the displacement transmissibilityXY=jbc+k-mb2+jbc+kWe wish to solve for displacement amplitude, so we rearrangeX=jbc+k-mb2+jbc+kYNext, we must determine the amplitude of the base excitation. We are given the base excitation in the formyt=0.01msinbtBut we must convert it to the formyt=ReYejbtFrom an earlier example problem, this is true ifY=-0.01j mThus, we can writeX=jbc+k-mb2+jbc+k(-0.01j)2. Speed of resonanceFor car 1, the natural frequency isn1=km1=40000Nm1007kg=6.303radsand for car 2n2=km2=40000Nm1585kg=5.024radsWe must now find the speeds that generate the above natural frequencies. For car 1v1=n10.291=21.7kmhrv2=n20.291=17.3kmhr3. Amplitude of displacement at resonanceFirst, let us simplify the amplitude equation by dividing through by m.X=jbcm+n2-b2+jbcm+n2(-0.01j)At resonance b = n, so that the denominator simplifies toX=jncm+n2jncm-0.01jX=jcm+njcm-0.01jX=jc+mnc-0.01X=j+mnc-0.01For car 1, we haveX1=j+1007 kg6.303rads2000kgs-0.01X1=-0.032-0.01j mAnd for car 2,X2=j+1585 kg5.024rads2000kgs

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论