红 外 天 文 学.doc_第1页
红 外 天 文 学.doc_第2页
红 外 天 文 学.doc_第3页
红 外 天 文 学.doc_第4页
红 外 天 文 学.doc_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

红 外 天 文 学红外天文学是利用电磁波的红外波段研究天体的一门学科。整个红外波段,包括波长0.71OOO微米(1毫米)的范围。通常分为两个区:0.725微米的近红外区和251OOO微米的远红外区;也有人分为三个区:近红外区(0.73微米)、中红外区(330微米)和远红外区(301OOO微米)。温度4OOO度以下的天体,其主要辐射在红外区。 红外探测是观测被宇宙尘埃掩蔽的天体的得力手段;红外波段有许多重要的分子谱线;许多河外天体在远红外区的辐射较强。红外天文学正在成为实测天文学的最重要领域之一。 1800年,英国著名天文学家赫歇耳在观测太阳时,用普通温度计首次发现红外辐射。1869年,罗斯用热电偶测量了月球的红外辐射。对行星和一些恒星进行红外测量,是美国天文学家柯布伦茨等人在二十世纪二十年代进行的。但在六十年代以前的一个半世纪中,红外天文学进展缓慢,这主要因为当时缺乏有效的探测手段。 第二次世界大战后,红外技术发展很快,各类高灵敏度的红外探测器相继问世,气球、火箭以及人造卫星技术也为红外天文观测摆脱地球大气的限制提供了方便。这些都为现代红外天文学的兴起打下了基础。1965年,美国加利福尼亚理工学院的诺伊吉保尔等人用简易的红外望远镜发现了著名的红外星,从此揭开了现代红外天文学的新篇章。 在地面上进行红外天文观测,受地球大气的限制很大。大气中的水汽、二氧化碳、臭氧等分子,吸收了红外波段大部分的天体辐射,只有几个透明的大气窗口可供地面观测使用。如要在这些窗口以外的波段进行天体红外观测,就必须到高空和大气外进行。地球大气不但吸收天体的红外辐射,而且由于它具有一定的温度(约300K),其自身的热辐射对探测工作、特别是对波长大于5微米的观测,会造成极强的背景噪声。为了摆脱大气的这种影响,必须到高空和大气以外去进行中、远红外探测。 由于可能收集到的一般天体的红外辐射较弱,所以必须精选探测能力很高的红外探测器。用得较多的探测器是液氮致冷(77K)的硫化铅光电导器件,液氢致冷(从4K到小于1K)的锗掺镓测辐射计。从最早赫歇耳用简易温度计测量太阳的红外辐射到现在,红外探测器经历了很长的改善过程。 典型的地面望远镜在10微米波长观测红外源时,探测器上接收到的源信号是百亿分之一瓦的量级,而探测器上得到的背景辐射却有千万分支一瓦。强的背景噪声淹没了微弱的源信号,所以红外天文探测的一个根本问题就是抑制背景噪声。红外探测器采取致冷措施就是为了减少元件自身的噪声。从事波长大于5微米的探测,望远镜系统中的一些其他部件(有时连整个望远镜)必须进行致冷。致冷技术在红外天文探测工作中是必不可少的。 在红外天文望远镜中,为了从观测的源信号加背景的总和中减去背景,设置了调制机构。这样就大大增加了仪器探测弱源的能力。 首次红外巡天普查是美国用波长2.2微米的地面红外望远镜进行的.对-3380的巡天探测结果,发现亮于40央的红外源约 5600个。虽然其中大多数可证认为光谱型在K5型以后的恒星,即大多数是晚型巨星,然而,约有50个红外源在0.82.2微米有约1000K的色温度,并且大多数不与光学天体对应。 美国空军坎布里奇研究实验所1971年和1972年共7次用火箭在波长4微米、11微米和20微米进行巡天工作,探测范围约占79的天空区域。在 4微米测到2507个红外源,在11微米测到1441个红外源,在20微米测到873个红外源。有的红外源在不同波段都测到了,所以探测到的红外源共约3200个。以后又进行了几次探测,测到一些新源。 科学家们在小部分天区还做过更长波段的巡天工作。美国天文学家霍夫曼等人在19701971年用一个小气球上的望远镜,在波长100微米观测到了极限通量密度10000央的近百个红外源,这些源基本上沿着银道面分布。 至今探测到的红外源包括太阳系天体、恒星、电离氢区、分子云、行星状星云、银核、星系、类星体等。在红外波段也对微波背景辐射进行过探测。此外,高分辨率红外光谱已在行星和某些恒星方面做出成果,近两年也在红外波段发现了新的星际分子谱线。X 射 线 天 文 学X射线天文学是通过X射线波段(波长0.01100埃的电磁辐射)研究天体的一门学科。 因为天体的 X射线会受到地球大气的严重阻碍,所以主要利用卫星进行探测。因此,虽然 X射线的探测始于二十世纪四十年代,但是成为一门学科,则是人造地球卫星上天以后的事。 早期的观测工作集中于太阳的研究。自从1962年6月18日美国麻省理工学院研究小组第一次发现来自天蝎座方向的强大 X射线源以后,非太阳 X射线天文学进入一个新的发展阶段。七十年代以来,发射了专门研究 X射线的天文卫星,观测到许多先前不知道的宇宙 X射线源,使X射线源的数目从十几个猛增到一千多个。 太阳 X射线的探测,主要弄清了它的三个成分:日冕高温等离子体的连续辐射和其他谱线辐射,构成了 X辐射宁静成分;温度在百万度以上的日冕凝聚区的超热等离子体所产生的辐射,构成 X辐射的缓变成分,在日面上呈现为 X射线亮斑。太阳活动区所产生的X射线爆发,构成了X辐射突变成分。在日面上呈现为 X射线耀斑。 过去几年,太阳 X射线测量的一个重要方面,是探测 X射线爆发的能谱和偏振。着重于研究耀斑脉冲阶段的高能天体物理过程,如高能粒子的起源、传输、能量的转化以及发射的性质等等。目前已初步确立了X射线辐射源的模型,这对耀斑物理的研究有重要价值。另外,已经研究清楚,太阳X射线在形成地球电离层的过程中起重要作用。 X射线望远镜已具有角秒量级的高分辨本领,这就为深入研究太阳现象创造了条件。X射线耀斑和X射线亮斑的发现大大增进对太阳活动区的研究和认识。而X射线冕洞的发现,更是太阳物理学的一项重大成果。现在已经查明,X射线冕洞就是高速太阳风的风源,也就是日地关系研究中长期没有弄清楚的M区。冕洞物理提出了许多有价值的课题,如冕洞的形成,高速太阳风源的成因等,特别是冕洞的刚性转动倾向迄今还未找到满意的解答。 十多年来,非太阳X射线天文学发展特别迅速,取得重大的突破。在已发现的X射线源中,有多种不同类型的客体,而目前只有少量得到确切的光学证认。在星系和星系团中的强射电星系(如室女座A等)和活动的塞佛特星系等均为著名的X射线源。作为河内的展源,超新星遗迹(如蟹状星云、仙后座A等)也是一类重要的X射线源。有些X射线源,光学证认为双星的成员星,如半人马座X-3、武仙座X-1、天蝎座X-1、天鹅座X-1等等,它们的成员星之一是X射线星。按照现代X射线双星理论,猜想这种X射线星是中子星或黑洞。 大量射电脉冲星的发现,诱导人们去探索X射线脉冲星的存在。随着新的探测技术的发展,已有可能发现后一种脉冲星。1969年发现蟹状星云脉冲星PSR0532的X射线脉冲辐射,它和对应的光学脉冲几乎有完全相同的周期。后来又发现了其他类型的X射线脉冲星。这些发现对双星演化过程的研究很有价值。 X射线天文观测的另一类课题是关于弥漫X射线背景测量。几乎是各向同性的宇宙X射线背景辐射的发现,被认为是六十年代X射线天文学的重大成就之一。 1974年以后的几年中,英国“羚羊”5号及其他卫星,相继发现了宇宙X射线爆发和一批暂现X射线源,从而在宇宙中又揭示了一批前所未知的现象和新型 X射线源,这被公认为七十年代天文学的重大发现。这些过程所释放的能量之大,能量释放速度之快,贮能密度之高以及奇特的再现周期,迄今仍然是现代高能天体物理学的重大研究课题。 X射线天文学所采用的探测仪器随X射线光子能量不同而有所不同。探测软X射线用薄窗正比计数器,常用铍做窗材料,镀窗的密封性能好,能保证仪器工作稳定,但镀窗的厚度仍然限制着计数数器对更低能量X射线的灵敏度。探测极软X射线,要使用有机薄膜窗的计数器,但有机薄膜窗的气体密封性不好。近年来在空间探测中发展了一种自动调节的流气技术,保证计数器管内维持一定气压,使仪器的响应处于稳定可靠状态,不过它的制造工艺和使用条件都较为复杂。 在非太阳X射线源的探测方面,为提高灵敏度,常常需要大面积的薄宙正比计数器。这种仪器的制造技术近年来发展较快。美国小型天文卫星“自由号”曾使用面积达840平方厘米、厚仅50微米的铍窗正比计数器。随着X射线能量的升高,正比计数器将失去作用,它的探测上限约为60千电子伏。更高能量的探测,则须用闪烁计数器。 正比计数器和闪烁计数器本身没有任何成像和定向功能。为了证认各种X射线源和精确定出它们在空中的方位,必须在计数器前部加上准直器。这种准直技术近几年发展特别迅速。目前广泛使用的准直器类型有丝栅型准直器、板条型准直器和蜂窝状准直器等。前者多用于软X射线波段,后两种用于硬X射线波段。此外,还有闪烁体构成的主动式准直器。 实验X射线天文学的一个突出成就,就是将掠射光学原理应用于X射线天文,使大面积X光聚焦成像技术成为现实,制成了真正有研究价值的高分辨本领的X射线望远镜。它提供了把X射线的探测区域扩大到更遥远的宇宙深处的可能性。 X射线天文学从诞生时起,在近二十年的短暂时间内发现了一系列前所未知的新型天体,获得光学天文和射电天文无法得到的天体信息,大大地扩展了天文学的研究领域。X射线天文学所显示的独特威力,使得它在当代空间天文学中处于特别重要的地位。恒 星 天 文 学恒星天文学是研究恒星、星际物质和各种恒星集团的分布和运动特性的天文学分支学科。由于恒星为数众多,恒星天文学不能采用讨论单个恒星的办法,而主要借助于统计分析和数学方法来进行研究。恒星天文学的资料取自天体测量学、天体物理学和射电天文学获得的各种数据,包括恒星的视差、位置、自行、星等、色指数、光谱型、光度级和视向速度等。 恒星天文学作为一门学科是由老赫歇耳通过对恒星的大量观测和研究开始的。1783年他首次通过分析恒星的自行发现了太阳在空间的运动,并定出了运动的速度和向点。小赫歇耳继承和发展了其父开创的事业,在恒星计数、双星观测和编制星团和星云表方面进行了大量的工作。 1837年斯特鲁维等测定了恒星的三角视差,从此便开始了测定恒星距离的工作。1887年斯特鲁维从对恒星自行的分析中,估计了银河系自转的角速度。十九世纪中叶天体物理学开始建立后,恒星光谱分析为恒星天文学提供了重要资料。1907年史瓦西提出恒星本动速度椭球分布理论,开创了星系动力学。1912年,勒维特发现造父变星的周光关系,成为测定遥远星团的距离的有力武器。由此,人们才对银河系的整体图像,以及太阳在银河系中的地位,有了比较正确的认识。 19051913年,赫茨普龙和罗素创制了赫罗图,对了解恒星的演化和推求其距离提供了有力的手段。1918年,沙普利分析了当时已知的100个球状星团的视分布,并用周光关系估算出它们的距离,得出了银河系是一个庞大的透镜形天体系统和太阳不居于中心的正确结论。 1927年,荷兰的奥尔特根据观测到的运动数据证实了银河系自转。此外,银河系次系、星族、星协概念的建立和证实,对变星和星团、星云的研究和探讨恒星系统的结构作出了重要的贡献。 射电天文学的发展为恒星天文学提供了一种有力工具。1951年,人们开始利用中性氢21厘米谱线研究银河系内中性氢云的分布。1952年证实银河系的旋臂结构; 1958年发现银河系中心的复杂结构和银核中的爆发现象。 六十年代以来,相继发现几十种星际分子的射电辐射。这些用光学方法所未能得到的观测结果,对研究银河系自转、旋臂结构、银核和银晕都是非常宝贵的。 星系动力学从二十年代以来有很大的发展。1942年,林德布拉德提出了形成旋臂的“密度波”概念,以期克服旋涡星系的形成和维持旋臂的理论困难。1964年以来,林家翘等人发展了密度波理论,并且探讨星系激波形成恒星的理论。 现阶段的恒星天文学所研究的主要内容有:星系中物质的分布同星系旋转的关系;恒星速度弥散度的规律;恒星系统的引力稳定性;球状星团和星系的动力学结构和演化以及星系动力学中“第三积分”(即除能量和角动量两个积分外)是否存在的问题等。对这些问题的研究都已取得一定程度的进展。此外,人们推测在球状星团和星系团中可能存在大质量致密天体(黑洞),故以广义相对论为基础的强引力场星系动力学正在形成中。空 间 天 文 学空间天文学是在高层大气和大气外层空间区域进行天文观测和研究的一门学科,空间天文学的兴起是天文学发展的又一次飞跃。 就观测波段而言,空间天文学可分成许多新的分支,如红外天文学、紫外天文学、X射线天文学等。从发射探空火箭和发送气球算起,空间天文研究始于二十世纪四十年代。空间科学技术的迅速发展,给空间天文研究开辟了十分广阔的前景。 空间天文学在外层空间开展的天文观测,突破了地球大气这个屏障,扩展了天文观测波段,取得观测来自外层空间的整个电磁波谱的可能性。 由于大气中臭氧、氧,氮分子等对紫外线的强烈吸收,天体的紫外光谱在地面无法进行观测;在红外波段,则由于水汽和二氧化碳分子等振动带、转动带所造成的强烈吸收,只留下为数很少的几个观测波段;在射电波段上,低层大气的水汽是短波的主要吸收因素,而电离层的折射效应则将长波辐射反射回空间;至于x、射线,更是难于到达地面;由于分子散射,地球大气还起着非选择性消光作用。而空间天文观测基本不受上述因素的影响。 另外,空间观测会减轻或免除地球大气湍流造成的光线抖动的影响,天象不会歪曲,这就大大提高仪器的分辨本领。今天的空间技术力量已能直接获取观测客体的样品,开创了直接探索太阳系内天体的新时代。 现在已经能够直接取得行星际物质的粒子成分、月球表面物质的样品和行星表面的各种物理参量,并且取得没有受到地球大气和磁场歪曲的各类粒子辐射的强度、能谱、空间分布和它们随时间变化的情况等。 现代空间科学技术是空间天文发展的基础,近二十年来,它给空间天文观测提供了各种先进的运载工具。目前,空间天文观测广泛地使用高空飞机、平流层气球、探空火箭、人造卫星、空间飞行器、航天飞机和空间实验室等作为运载工具,进行技术极为复杂的天文探测。特别是人造卫星和宇宙飞船,是空间天文进行长时期综合性考察的主要手段。 自六十年代以来,世界各国发射了一系列轨道天文台以及许多小型天文卫星、行星探测器和行星际空间探测器。美国在七十年代发射的天空实验室,是发展载人飞船的空间天文观测技术的次尝试。今后的空间天文观测将主要依靠环绕地球轨道运行的永久性观测站来进行。 空间天文探测常常需要准确证认辐射源的方位,有时需要在短达几秒钟的时间内完整地记录一个复杂的瞬时性爆发现象;有时则要求探测仪器在极端干净的环境中工作,免遭太空环境的干扰。现代空间科学技术常常能够满足这些严格的要求,为上述运载工具提供极为准确的定向系统、复杂而又可靠的姿态控制系统、大规模高速信息采样和回收系统以及各种任意选择的运行轨道,给天文观测以良好的保证。 空间天文迅速发展的另一个因素是实验方法的不断完善。空间天文的实验方法和传统的光学或射电天文方法有很大区别。由于电磁辐射性质的不同,特别在高能辐射方面差别更大,因此,对它们的探测多半需要采用各种核辐射探测技术,利用电磁辐射的光电、光致电离电子对转换等效应,来测量辐射通量和能谱,并根据空间天文的特点加以发展。目前在空间天文中从紫外线软X射线直到高能射线,按照能量的高低广泛使用光电倍增管、光子计数器。电离室、正比计数器。闪烁计数器、切连科夫计数器和火花室等多种探测仪器。 在这些辐射波段里,一般的光学成像方法失去作用,必须应用掠射光学原理进行聚光和成像。现在,已经使用掠射X射线望远镜,但还只应用于远紫外和软X波段。在硬X射线和射线波段目前还没有任何实际有效的聚光和成像方法。 空间天文探测的一个重要方面是证认各种辐射源,并确定其方位。上述各种探测器本身不具有任何方向性,因此发展了定向准直技术。这种技术在X射线天文中,应用得最为充分,如丝栅型、板条型、蜂窝状等不同类型的准直器已广泛使用。 空间天文的发展大致经历了三个阶段。最初阶段致力于探明地球的辐射环境和地球外层空间的静态结构,这个时期的主要工作是发展空间科学工程技术。第二阶段开始探索太阳、行星和行星际空间。第三阶段是从二十世纪七十年代起,开始探索银河辐射源,并向河外源过渡。六十年代初以来,在太阳系探索和红外、紫外、x射线、射线天文方面,都取得十分重大的成就。 空间探测首先在近地空间、行星际空间方面取得重大突破。发现日冕稳定地向外膨胀,电离气体连续地从太阳向外流出,形成所谓太阳风。这些成就改变了原来的日地空间的概念。行星际空间探测清楚地揭示了行星际磁场的图像,天体物理学家由此而得到启示去寻找它与太阳本身的关系,并且产生研究太阳光球背景场的兴趣。 行星际空间是一个天然的等离子体实验室,它提供了地面实验室条件下无法比拟的规模和尺度。太阳风作为无碰撞的等离子体,通过对行星际空间中丰富的动力学现象的观测而得到最充分的研究。 行星、月球的探测主要是依靠对行星、月球作接近飞行或在上面登陆的行星探测器来进行的。很自然,最先得到探索的行星是地球。1958年范爱伦设计了地球“探险者”1号,并在1959年通过这个卫星的测量发现了范爱伦辐射带,对这一问题的继续研究又揭示了地球周围存在着一个复杂的巨大磁层,这是空间探索在行星科学方面的首次重大进展。接着开始对月球和其他行星的一系列探测,在这一阶段得到很多有意义的资料,动摇了地面天文研究的许多结论。 在空间进行红外天文探测始于六十年代后期。用高空飞机、平流层气球、火箭等手段进行红外探测已取得许多重要成果。七十年代初期,几次火箭巡天探测,在波长4、11和20微米波段发现三千多个红外源,描绘出一幅完全不同于光学天空的新图像。红外源包括了星前物质、恒星、行星状星云、电离氢区、分子云、星系核和星系等。中、远红外的探测还发现一些星系、类星体等存在着预想不到的强辐射,如3C273、NGCl068、M82等。在某些情况下,它们的红外亮度比它们在其余波段的全部辐射还要大三、四个量级。这种极强的红外辐射机制迄今未能解释。 人造卫星发射成功以来,紫外天文探测有了新的飞跃。由于使用了装载在轨道太阳观测台卫星上的扫描式紫外分光光谱仪,获得空前丰富的紫外发射线光谱资料。这些资料具有极高的空间分辨率,对色球日冕过渡层的物态研究颇有价值,从而为建立更精细的过渡层理论模型提供了实验依据。 恒星紫外辐射研究的主要课题是一些有关恒星大气模型的问题。空间观测表明,早型星在紫外波段有强烈的紫外连续谱和共振线。这种辐射与恒星大气的模型的关系十分密切,因而可以用来研究恒星大气。晚型星的紫外辐射类似太阳,主要来自色球和星冕。最近的一些观测证实,有些晚型星存在明显的色球层或外围高温气体。这反映色球、日冕结构可能普遍存在于恒星中。 紫外探测对星际物质的研究有特殊用处,因为星际物质包含有尘埃,它对不同波长的电磁辐射消光不同,这是研究星际尘埃本身的主要依据。根据大量空间观测得到的紫外波段消光的特点,人们得知星际尘埃包含有线度约为0.1微米的石墨尘粒。星系的紫外探测也已开始。观测证实星系存在强烈紫外辐射,并且显示出较大的紫外色余,这也许是星系中存在大量热星的表现。 六十年代初期开始的大量X射线探测,已经给我们展示了一幅与光学天文截然不同的宇宙图像。太阳X射线天文的主要贡献是弄清了太阳X辐射中的三个成分宁静、缓变和突变成分。宁静成分的X辐射起源于太阳色球外层和日冕区的热辐射,具有连续辐射和线辐射。缓变成分与活动区上空的日冕凝聚区有关;突变成分则和耀斑爆发或其他日面偶发性活动有关,人们常称为X射线爆发。 对X射线爆发的观测和研究已经充分揭示了太阳耀斑的非热特征。它与射电微波爆发结合在一起,对建立耀斑的爆发阶段模型,以及建立耀斑区粒子加速过程模型提供了重要根据。此外,X射线冕洞的发现也是一个相当重要的事件。 1962年6月第一次发现来自天蝎座方向的强X射线辐射以后,在不到二十年的时间内,非太阳X射线天文也蓬勃发展起来。和其他领域相比,它的实验方法比较成熟,在空间天文中发展最快,成就最为突出。目前已发现一千多个X射线源,其中一部分已得到光学证认,它们和强射电星系、塞佛特星系、超新星遗迹有关。 射电脉冲星的发现很自然地促使人们去寻找X射线脉冲星。1969年首先发现蟹状星云脉冲星NP0532的脉冲 X辐射,它和对应的光学脉冲几乎有完全相同的周期。以后又发现半人马座X-3、武仙座X-1等都是著名的另一类 X射线脉冲星,它们的发现对双星演化过程有非常重要的意义。 非太阳X射线探测的另一个成果是,发现了几乎是各向同性的宇宙X射线背景辐射,这对天体演化的研究有重要意义。 1974年以后,随着大面积探测器的出现,终于又发现了一批短暂X射线源和宇宙X射线爆发。后者具有重现性特征,并释放出巨大的能量,目前还没有一种理论能作出合适的说明。 1977年高能天文台的发射,使X射线天文的视野扩展到河外天体。它已经成功地得到可能的黑洞圆规座X-1的数据。还发现星系际可能存在着热气体,它的总质量可能超过星系内恒星总质量。这意味着发现了宇宙的主要成分。 太阳射线探测的尝试虽开始于五十年代末期,但高能量的发射线探测成功则是在1972年8月,在一次太阳特大耀斑事件中,轨道太阳观测台7号卫星以非常高的能量分辨率记录到了完整的射线谱,从而使太阳射线天文的研究跨出了新的一步。这次探测证实,太阳射线爆发包含有熟知的特征发射线,它们被证认为是正负电子对湮没、中子俘获、碳12和氧16的核态向低能态过渡所引起的辐射。这对高能耀斑物理的研究具有重要意义。 1973年“维拉”卫星偶然探测到辐射能流可与太阳耀斑爆发相比的宇宙 射线爆发。这也许是七十年代天文学最重大的发现之一,当时轰动了高能天体物理学界。这种宇宙射线爆发具有极短的光变时标、高达一万亿亿亿尔格的巨大能量和快速的能量释放,它迄今仍然是天体物理中最迷人的问题之一。 空间天文学的独特贡献,特别是在七十年代的一些重要发现,对天文学产生了巨大影响,从而使我们对太阳系行星、银河系、恒星早期和晚期演化、星际物质、行星际空间、星系际空间等一系列领域的了解,发生深刻的变化。然而空间科学技术,特别是空间天文的实验方法尚处于不断完善之中,新技术、新方法、新原理不断出现,使得我们有理由认为,天文学的这个最年轻的分支是最天 体 物 理 学天体物理学是应用物理学的技术、方法和理论,研究天体的形态、结构、化学组成、物理状态和演化规律的天文学分支学科。 从公元前129年古希腊天文学家喜帕恰斯目测恒星光度起,中间经过1609年伽利略使用光学望远镜观测天体,绘制月面图,16551656年惠更斯发现土星光环和猎户座星云,后来还有哈雷发现恒星自行,到十八世纪老赫歇耳开创恒星天文学,这是天体物理学的孕育时期。 十九世纪中叶,三种物理方法分光学、光度学和照相术广泛应用于天体的观测研究以后,对天体的结构、化学组成、物理状态的研究形成了完整的科学体系,天体物理学开始成为天文学的一个独立的分支学科。 天体物理学的发展,促使天文观测和研究不断出现新成果和新发现。1859年,基尔霍夫对太阳光谱的吸收线(即夫琅和费谱线)作出科学解释。他认为吸收线是光球所发出的连续光谱被太阳大气吸收而成的,这一发现推动了天文学家用分光镜研究恒星;1864年,哈根斯用高色散度的摄谱仪观测恒星,证认出某些元素的谱线,以后根据多普勒效应又测定了一些恒星的视向速度;1885年,皮克林首先使用物端棱镜拍摄光谱,进行光谱分类。通过对行星状星云和弥漫星云的研究,在仙女座星云中发现新星。这些发现使天体物理学不断向广度和深度发展。 1905年,赫茨普龙在观测基础上将部分恒星分为巨星和矮星;1913年,罗素按绝对星等与光谱型绘制恒星分布图,即赫罗图;1916年,亚当斯和科尔许特发现相同光谱型的巨星光谱和矮星光谱存在细微差别,并确立用光谱求距离的分光视差法。 在天体物理理论方面,1920年,萨哈提出恒星大气电离理论,通过埃姆登、史瓦西、爱丁顿等人的研究,关于恒星内部结构的理论逐渐成熟;1938年,贝特提出了氢聚变为氨的热核反应理论,成功地解决了主序星的产能机制问题。 1929年,哈勃在研究河外星系光谱时,提出了哈勃定律,这极大地推动了星系天文学的发展;19311932年,央斯基发现了来自银河系中心方向的宇宙无线电波;四十年代,英国军用雷达发现了太阳的无线电辐射,从此射电天文蓬勃发展起来;六十年代用射电天文手段又发现了类星体、脉冲星、星际分子、微波背景辐射。 1946年美国开始用火箭在离地面30100公里高度处拍摄紫外光谱。1957年,苏联发射人造地球卫星,为大气外层空间观测创造了条件。以后,美国、西欧、日本也相继发射用于观测天体的人造卫星。现在世界各国已发射数量可观的宇宙飞行器,其中装有各种类型的探测器,用以探测天体的紫外线、x射线、射线等波段的辐射。从此天文学进入全波段观测时代。 天体物理学分为:太阳物理学、太阳系物理学、恒星物理学、恒星天文学、星系天文学、宇宙学、宇宙化学、天体演化学等分支学科。另外,射电天文学、空间天文学、高能天体物理学也是它的分支。 太阳是离地球最近的一颗普通恒星。对太阳的研究,经历了从研究它的内部结构、能量来源、化学组成和静态表面结构,到使用多波段电磁辐射研究它的活动现象的过程。太阳风的影响能够为我们直接感受。日地关系密切,所以研究有关地球的科学,必须考虑太阳的因素。 对行星的研究是天体物理学的一个重要方面。近二十年来,对彗星的研究以及对行星际物质的分布、密度、温度、磁场和化学组成等方面的研究,都取得了重要成果。随着空间探测的进展,太阳系的研究又成为最活跃的领域之一。 银河系有一、二千亿颗恒星,其物理状态千差万别。球状体、红外星、天体微波激射源、赫比格一阿罗天体,可能都是从星际云到恒星之间的过渡天体。 特殊恒星更是多种多样:造父变星的光变周期为150天,光变幅为0.12个星等;长周期变星的光变周期为901000天,光变幅为2.59个星等;天琴座RR型变星的光变周期为0.051.5天,光变幅不超过12个星等;金牛座 T型变星光变不规则,没有固定的周期;新星爆发时抛出大量物质,光度急骤增加几万到几百万倍;有的红巨星的半径比太阳半径大1000倍以上;白矮星的密度为每立方厘米一百公斤到十吨,中子星密度更高达每立方厘米一亿吨到一千亿吨。 各种各样的恒星,为研究恒星的形成和演化规律提供了样品。另外,天体上特殊的物理条件,在地球上往往并不具备,利用天体现象探索物理规律,是天体物理学的重要职能。 通过多年研究,人们对银河系的整体图像以及太阳在银河系中的地位,有了比较正确的认识。银河系的直径为十万光年,厚两万光年。通过对银河系恒星集团的研究,建立和证实了星族和银河系次系等概念。对银河系自转、旋臂结构、银核和银晕也进行了大量研究。 河外星系与银河系属于同一天体层次。星系按形态大致分为五类:旋涡星系、棒旋星系、透镜型星系、椭圆星系、不规则星系。按星系的质量大小,又可分为矮星系、巨星系、超巨星系,它们的质量依次约为太阳的一百万到十亿倍、几百亿倍和万亿倍以上。同银河系一样,星系也由恒星和气体组成三、五个、十来个、几十个以至成百上千个星系组成星系集团,称星系群、星系团。 通过各种观测手段,人们的视野扩展到150亿光年的宇宙“深处“。这就是“观测到的宇宙”,或称为“我们的宇宙”,也就是总星系。 研究表明,宇宙物质由化学元素周期表中近百种化学元素和289种同位素组成。在不同宇宙物质中发现了地球上不存在的矿物和分子。 二百多年来,关于太阳系的起源和演化问题已提出四十多种学说,但至今还没有一个学说被认为是完善的而被普遍接受。近三十年来这方面有了很大进展,目前大多数天文学家赞成的恒星演化学说是所谓的“弥漫说”,但也有少数人认为恒星是由超密物质转化而成的。 用物理学的技术和方法分析来自天体的电磁辐射,可得到天体的各种物理参数。根据这些参数运用物理理论来阐明发生在天体上的物理过程,及其演变是实测天体物理学和理论天体物理学的任务。 除了宇宙线的粒子探测、陨石的实验室分析、宇宙飞行器对太阳系天体的实地采样和分析,以及尚在努力探索中的引力波观测之外,目前关于天体的信息都来自电磁辐射。天体物理仪器的作用是对电磁辐射进行收集定位、变换和分析处理。电磁辐射的收集和定位是由望远镜(包括射电望远镜)来实现的。 从辐射的连续谱可以判断辐射的机制,还可以得知天体的表面温度;从早型星的巴耳末系限上的跳变,可以得知天体的表面压力;由UBV测光系统也可粗略地确定恒星的光度和温度值。从线谱可以获得更多的信息:视向速度、电子温度、电子密度、化学组成、激发温度端流速度。对双星的观测研究,可以得到天体的半径、质量和光度等重要数据。研究脉动变星的光变周期与光度之间的关系,可以确定天体的距离。 辐射转移理论是解释已知天象的有力工具,而且还可以预言尚未观测到的天体和天象。以辐射转移理论为基础建立的恒星大气理论,以热核聚变概念为基础发展起来的元素合成理论、恒星内部结构理论和天体演化理论,乃是理论天体物理学的基础。 理论物理学中的辐射、原子核、引力、等离子体、固体和基本粒子等理论,为研究类星体、宇宙线、黑洞脉冲星、星际尘埃、超新星爆发奠定了基础。 人类对宇宙的认识不断扩大,不仅使人们愈来愈深入地了解宇宙的结构和演化规律,同时也促使物理学在揭示微观世界的奥秘方面取得进展。氮元素就是首先在太阳上发现的,过了二十五年后才在地球上找到。热核聚变概念是在研究恒星能源时提出的。由于地面条件的限制,某些物理规律的验证只有通过宇宙这个“实验室”才能进行。六十年代天文学的四大发现类星体、脉冲星、星际分子、微波背景辐射,促进了高能天体物理学、宇宙化学、天体生物学和天体演化学的发展,也向物理学、化学、生物学提出了新的课题。恒 星 物 理 学恒星物理学是天体物理学的分支之一,它是应用物理学知识,从实验和理论两方面研究各类恒星的形态、结构、物理状态和化学组成的一门学科。另一方面,在恒星上发现的某些奇特物理现象,也能够启发和推动现代物理学的发展。 一般的恒星都是炽热的气体球,所以研究恒星所必需的一切资料几乎全部来自恒星自身的电磁辐射,近年来才开始有可能检测它们的高能粒子和引力波效应。因此人们主要使用各种光学、红外线、射电和X射线等天文望远镜,以及所附的照相装置、光电装置、分光装置、偏振装置、热检测装置、微波检测装置、频谱检测装置、能谱检测装置等,去测量各类恒星在不同波段上的辐射强度、能谱、谱线结构、偏振状态、角直径、角间距、视面结构和角位移等物理量。 然后,应用热辐射理论,可以推出恒星表面的有效温度;应用谱线位移和一定的几何方法,可以确定恒星自转特性、双星特性或脉动特性(结合光度变化特性);再利用引力理论、辐射理论和脉动理论,可推出双星轨道半长径、子星半径、子星质量(或质量函数)及脉动变星的平均半径和平均密度等;应用谱线的形成和致宽理论,可以推出恒星大气的电子压力、气体压力、不透明度、元素的丰度以及恒星的光度;应用核物理理论,可以推知恒星的产能机制及其变迁,再结合辐射转移理论就可建立恒星模型,用以研究恒星内部结构理论;应用塞曼效应,可椎知恒星磁场;应用引力理论、粒子理论,可以探讨恒星晚期超密态的各种现象;应用等离子体理论,可以探讨星冕、星风、质量交流和质量损失等恒星大气现象;最后,综合应用各种物理理论,可以探讨恒星的形成和演化。 恒星大气是我们能直接观测到的恒星外层部分。应用分光技术,依照辐射平衡、局部热动平衡的辐射转移理论和恒星大气模型理论,可以在一定程度上解释连续光谱、吸收光谱和发射光谱的形态,探明它们的形成机制、演变过程和致宽因素,并弄清楚大气中光球、反变层、色球层、星冕等不同层次的物理状况和相互关系,以及大气中的元素丰度等,还可以研究恒星自转,并根据较差自转来探讨恒星大气内层的情况。 研究恒星内部从中心到表面各层的物态和物理过程,探讨恒星内部输送能量和维持温度梯度的物理机制,根据研究结果解释观测到的恒星质量、光度、半径和表面温度等的时序变化和相互关系。确定产能和维持恒星不断辐射的核物理过程,探讨元素合成理论以解释现有的元素丰度。目前较流行的是1957年由伯比奇夫妇、福勒和霍伊尔联合提出的理论。 许多恒星有脉动性的光变,理论研究表明,脉动现象是恒星演化到一定阶段的必然现象。根据最重要的几种脉动变星的周光关系,可以确定恒星和许多有关天体的距离。利用线性和非线性脉动理论,可以较好地解释恒星的脉动现象。 多种恒星有不同能量级的爆发现象。从年轻的耀星、金牛座T型变星到老年和临近“死亡”的新星、超新星,都有爆发现象。关于各类爆发的物理机制还不十分清楚,需要积累更多更完善的观测资料,并进行更深入的理论分析。对于新星的爆发和许多类似的其他星体的爆发,许多人试图采用双星模型进行解释。 双星是恒星世界的普遍现象,估计银河系中太阳附近半数以上的恒星是双星或聚星的子星。根据长期的目视、照相、光度和分光观测,可以定出恒星最基本的物理参量:质量和半径。密近双星系统中存在大量的质量交流。这种交流所引起的气流,气环、热斑、X射线爆发和新星爆发现象等,在光谱和光度变化中都有所反映,因而对研究引力相互作用、辐射相互作用、物质相互作用和恒星演化过程等都很重要。 根据流行的演化学说,晚期恒星因引力坍缩而成为密度大到10千克/厘米以上的致密星,即白矮星、中子星或黑洞。已观测到的白矮星有上千颗,被认为是中子星的脉冲星也已发现数百颗,但是黑洞则尚在探寻之中。所有这些天体的研究都与广义相对论密切相关,同时也是对广义相对论的检验。对天鹰座射电脉冲星双星PsRl913+16所进行的观测研究,有可能证实广义相对论预言过的引力波。 近年来,恒星物理学的一个重要发展是全波段观测的逐渐推广。射电、大气外X射线、远紫外线和红外线观测,大大丰富了我们关于恒星辐射和恒星表层物理的知识,并且发现了X射线新星和X射线双星等新天体,因而理论研究十分活跃。现在看来,有关密近双星系统的观测和理论研究,是解决许多恒星物理学问题的一把钥匙。 由于对耀星研究的深入,加上光斑干涉等超高分辨率和高精度光电视向速度分光仪等观测技术的发展,我们已经能够把当作点源的恒星与作为面源的太阳进行真正的类比研究。另一方面,由于有了大望远镜和其他新技术,我们已经能够对若干最近的星系(如大小麦哲伦云)内的各类恒星进行较详细的观测研究,从而把它们与银河系内的同类型恒星进行对比,这样就能更好地了解天体化学组成对演化进程的影响。 核物理学和基本粒子物理学的发展,加上大型快速电子计算机的广泛应用,推动人们进一步研究恒星的内部结构、元素合成和演化过程。脉冲星的发现,给理论家们以巨大的鼓舞。广义相对论和各种引力理论又重新活跃起来,被广泛应用于晚期恒星的研究。太 阳 物 理 学太阳物理学是用物理方法研究太阳的本质和演化的天体物理学分支学科。 太阳是一颗普通的恒星,可以和研究恒星一样,根据太阳的质量、半径。光度、光谱来推算它的表面温度、内部结构、能源机制等。但太阳物理也有其特点:利用太阳的强光,可观测它的表面细节,测出微小的光度变异,求得一些极为重要的数据(如太阳磁场分布);推求黑子、日珥、耀斑等日面活动客体的物理状态及其变化;直接感受太阳风的影响,从而获得日冕和行星际物质的珍贵信息。 中国古代对太阳黑子和日食现象就十分注意观测,留下了大量的记载。近代太阳物理的研究可追溯到伽利略用望远镜观测太阳黑子之时。以后,牛顿用棱镜发现了太阳光谱。但直到二十世纪初叶,光谱才成为揭开天体秘密的有力手段。从此,太阳物理学便步步深入,形成了一个理论和实际紧密联系的学科。 早在十九世纪末叶,人们就发现某些地球物理现象的变异和太阳黑子的多少有关,磁暴就是最突出的例子。进入二十世纪后,气候的灾变、地球物理现象的异常和太阳活动有关的记载日渐增多,证明了日地关系是很密切的。 对于太阳本身的研究,从三十年代起,在理论分析和观测手段上都有重大的进展。这不但增进了人类对太阳本身的了解,也促进了天体物理其他分支以及物理学的有关分支的发展。 当时研究的重点是把太阳当作普通恒星来对待,最重要的课题是太阳和恒星的内部结构和能源机制,太阳和恒星的化学成分和静态表面结构。在海耳取得太阳单色像和李舆发明Ha单色滤光器之后,取得太阳表面瞬变现象的动态资料就成为常规观测工作,在世界范围内能够按统一的标准监视太阳活动。人们在研究太阳的物理方法上从此跨进一个新时代。 四十年代到五十年代,由于射电天文学的发展以及太阳磁像仪的发明,人们对于太阳的研究又增加了新的内容。在六十和七十年代,空间观测又填补了许多空白。现在,我们已经能够取得从 射线到米波射电;从慢太阳风到宇宙线能级的高能粒子的资料,从而可以得到自太阳表面到地球的整个日地空间的直接数据。正是由于上述观测手段的发展,通过理论探讨,我们进一步认识到应该把太阳和日地空间作为一个整体来加以研究。 在太阳物理学理论上最重要的发展,无疑是阿尔文于四十年代所发现的在高导电流体中磁场与流场的耦合,从而把等离子体物理理论应用于太阳研究,解释了许多太阳射电、太阳话动的现象。 我们现在所理解的太阳,已经不仅仅是一个从一亿五千万公里之遥的地方供给我们光和热的大火球,还是一个与地球有直接物质联系的日地系统的母体。日地之间是靠从太阳发射出来的带磁场的高速太阳风进行物质联系的。 太阳上的各种物理现象,直接或间接地通过辐射和介质波以及高能粒子的运动,传到地球周围,对它施加影响。人们今天研究地球科学,就不能不或多或少地考虑太阳的因素。 太阳物理学目前较重要的问题之一,是所谓的中微子之谜。这很可能使人们回到老的起点,即重新研究太阳的内部结构问题。行 星 物 理 学行星物理学是研究行星及其卫星的物理状况和化学性质的学科,它是太阳系物理学的一个主要分支。 行星物理学的任务是:测定行星及其卫星的各种物理参数;研究行星及其卫星表面的构造、表面覆盖物的特性、表面温度及其周期变化;对有大气的行星和卫星,研究它们的大气的构造、物理状态和化学组成;研究行星的内部结构;研究行星的磁场、磁层以及太阳风与行星的相互作用。地理学和地球物理学一般不包括在行星物理学中。 十七世纪初,望远镜的诞生为行星及其卫星的物理研究提供了条件。虽然行星的视圆面很小,而且观测受到地球大气抖动等因素的影响,但用望远镜通过目视观测还是发现了行星表面的许多特征。 十九世纪中叶以后,照相术、测光术、分光术被广泛地应用到行星及其卫星的观测和研究中来。例如:用照相方法拍摄行星的照片;用测光方法测定行星和卫星的累积星等、明度星等、色指数、光度与位相的关系、反照率及表面的有效温度;用分光方法拍摄行星的光谱,并进而确定行星大气的成分,根据谱线位移量测定行星的自转周期等。随后,偏振测量也被广泛地应用到行星物理研究方面,对行星表面不同部分所反射的光的偏振测量,对于了解行星表面结构和特性有十分重要的价值。 二十世纪上半叶,射电天文学诞生后,开始

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论