数值实验三__LU分解法的优点.doc_第1页
数值实验三__LU分解法的优点.doc_第2页
数值实验三__LU分解法的优点.doc_第3页
数值实验三__LU分解法的优点.doc_第4页
数值实验三__LU分解法的优点.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数值实验三 LU分解法的优点一:实验目的 给定矩阵A与向量b A= n n-121n32对称n n-1n b=1000 (1) 求A的LU分解(2) 利用A的LU分解解下列方程:A*x=b A2*x=b A3*x=b对第题分析一下,如果先求M=A3,再解M*相比有何缺点?(3)利用A的LU分解法求A-1 ,其中n由自己选择,例如取n=5二:实验原理输入方程阶数n,系数矩阵A,右端向量bK=1,n(分解A=L*U)uk j=ak j-s=1k-1lks*us j (j=k,n) uk k F =0 T 输出失败信息,停 k= F 0 Tli k=(ai k-s=1k-1li sus k)/ukk (i=k+1,n) yk=b k-s=1k-1lk sys ) (k=1,2,n)(解方程组L*y=b) x k=(y k-s=k+1nuk sxs )/ukk (k=n,n-1,1) 输出x1,x2,xn,结束三:实验过程实验代码:Option Base 1 Dim a() As Single, u() As Single, l() As Single Private Sub Command1_Click() Dim m As Integer, p As Integer, n As Integer, k As Integer, i As Integer, j As Integer, s As Integer, t As Single n = Val(Text1.Text) ReDim a(n, n), u(n, n), l(n, n) For i = 1 To n For j = i To n a(i, j) = n + i - j a(j, i) = n + i - j Next Next t = 0 For k = 1 To n For j = k To n t = 0 For s = 1 To k - 1 t = t + l(k, s) * u(s, j) Next u(k, j) = a(k, j) - t Next If k n Then For i = k + 1 To n t = 0 For s = 1 To k - 1 t = t + l(i, s) * u(s, k) Next l(i, k) = (a(i, k) - t) / u(k, k) Next End If Next For m = 1 To n l(m, m) = 1 Next For i = 1 To n For j = 1 To n Text2.Text = Text2.Text & a(i, j) & vbCrLf Next Next For i = 1 To n For j = 1 To n Text3.Text = Text3.Text & l(i, j) & vbCrLf Next Next For i = 1 To n For j = 1 To n Text4.Text = Text4.Text & u(i, j) & vbCrLf Next NextEnd SubPrivate Sub Command2_Click() Dim y() As Single, x() As Single, b() As Single Dim n As Integer, k As Integer, i As Integer, j As Integer, s As Integer, t As Single n = Val(Text1.Text) ReDim y(n), x(n), b(n) b(1) = 1 For i = 2 To n b(i) = 0 Next i For k = 1 To n t = 0 For s = 1 To k - 1 t = t + l(k, s) * y(s) Next y(k) = b(k) - t Next For k = n To 1 Step -1 t = 0 For s = k + 1 To n t = t + u(k, s) * x(s) Next x(k) = (y(k) - t) / u(k, k) Next For i = 1 To n Text5.Text = Text5.Text & x(i) & vbCrLf Next End SubPrivate Sub Command3_Click() Dim y() As Single, x() As Single, b() As Single Dim n As Integer, k As Integer, i As Integer, j As Integer, s As Integer, t As Single n = Val(Text1.Text) ReDim y(n), x(n), b(n) b(1) = 1 For i = 2 To n b(i) = 0 Next i For i = 1 To 2 For k = 1 To n t = 0 For s = 1 To (k - 1) t = t + l(k, s) * y(s) Next y(k) = b(k) - t Next For k = n To 1 Step -1 t = 0 For s = k + 1 To n t = t + u(k, s) * x(s) Next x(k) = (y(k) - t) / u(k, k) Next For j = 1 To n b(j) = x(j) Next Next For i = 1 To n Text6.Text = Text6.Text & b(i) & vbCrLf NextEnd SubPrivate Sub Command4_Click() Dim y() As Single, x() As Single, b() As Single, v() As Single Dim n As Integer, k As Integer, i As Integer, j As Integer, s As Integer, t As Single n = Val(Text1.Text) ReDim y(n), x(n), b(n) b(1) = 1 For i = 2 To n b(i) = 0 Next i For i = 1 To 3 For k = 1 To n t = 0 For s = 1 To (k - 1) t = t + l(k, s) * y(s) Next y(k) = b(k) - t Next For k = n To 1 Step -1 t = 0 For s = k + 1 To n t = t + u(k, s) * x(s) Next x(k) = (y(k) - t) / u(k, k) Next For j = 1 To n b(j) = x(j) Next Next For i = 1 To n Text7.Text = Text7.Text & b(i) & vbCrLf NextEnd SubPrivate Sub Command5_Click() EndEnd SubPrivate Sub Command6_Click() Dim y() As Single, x() As Single, b() As Single, v() As Single Dim n As Integer, k As Integer, i As Integer, j As Integer, s As Integer, t As Single n = Val(Text1.Text) ReDim v(1 To n, 1 To n) ReDim y(1 To n) For i = 1 To n ReDim b(1 To n) b(i) = 1 For k = 1 To n t = 0 For s = 1 To k - 1 t = t + l(k, s) * y(s) Next y(k) = b(k) - t Next For k = n To 1 Step -1 t = 0 For s = k + 1 To n t = t + u(k, s) * v(s, i) Next v(k, i) = (y(k) - t) / u(k, k) Next Next For i = 1 To n For j = 1 To n Text8.Text = Text8.Text & v(i, j) & vbCrLf Next Next End Sub四:实验结果当n=10时A*x=b的解x1=【0 .5454544,-0.4999996,-3.971573E-07,2.5836E-07,-1.444715E-07,8.344654E-08,-5.188799E-08,2.407111E-08,-3.632159E-08,4.545457E-02】-1A2*x=b 的解为 x2=【0.5495862,-0.7727261,0.2499987,8.174827E-07,-4.631004E-07,3.457071E-07,-2.65427E-07,9.026667E-08,-2.272733E-02,4.958682E-02】-1A3*x=b的解为 x3=【0.6883911,-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论