




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数值实验三 LU分解法的优点一:实验目的 给定矩阵A与向量b A= n n-121n32对称n n-1n b=1000 (1) 求A的LU分解(2) 利用A的LU分解解下列方程:A*x=b A2*x=b A3*x=b对第题分析一下,如果先求M=A3,再解M*相比有何缺点?(3)利用A的LU分解法求A-1 ,其中n由自己选择,例如取n=5二:实验原理输入方程阶数n,系数矩阵A,右端向量bK=1,n(分解A=L*U)uk j=ak j-s=1k-1lks*us j (j=k,n) uk k F =0 T 输出失败信息,停 k= F 0 Tli k=(ai k-s=1k-1li sus k)/ukk (i=k+1,n) yk=b k-s=1k-1lk sys ) (k=1,2,n)(解方程组L*y=b) x k=(y k-s=k+1nuk sxs )/ukk (k=n,n-1,1) 输出x1,x2,xn,结束三:实验过程实验代码:Option Base 1 Dim a() As Single, u() As Single, l() As Single Private Sub Command1_Click() Dim m As Integer, p As Integer, n As Integer, k As Integer, i As Integer, j As Integer, s As Integer, t As Single n = Val(Text1.Text) ReDim a(n, n), u(n, n), l(n, n) For i = 1 To n For j = i To n a(i, j) = n + i - j a(j, i) = n + i - j Next Next t = 0 For k = 1 To n For j = k To n t = 0 For s = 1 To k - 1 t = t + l(k, s) * u(s, j) Next u(k, j) = a(k, j) - t Next If k n Then For i = k + 1 To n t = 0 For s = 1 To k - 1 t = t + l(i, s) * u(s, k) Next l(i, k) = (a(i, k) - t) / u(k, k) Next End If Next For m = 1 To n l(m, m) = 1 Next For i = 1 To n For j = 1 To n Text2.Text = Text2.Text & a(i, j) & vbCrLf Next Next For i = 1 To n For j = 1 To n Text3.Text = Text3.Text & l(i, j) & vbCrLf Next Next For i = 1 To n For j = 1 To n Text4.Text = Text4.Text & u(i, j) & vbCrLf Next NextEnd SubPrivate Sub Command2_Click() Dim y() As Single, x() As Single, b() As Single Dim n As Integer, k As Integer, i As Integer, j As Integer, s As Integer, t As Single n = Val(Text1.Text) ReDim y(n), x(n), b(n) b(1) = 1 For i = 2 To n b(i) = 0 Next i For k = 1 To n t = 0 For s = 1 To k - 1 t = t + l(k, s) * y(s) Next y(k) = b(k) - t Next For k = n To 1 Step -1 t = 0 For s = k + 1 To n t = t + u(k, s) * x(s) Next x(k) = (y(k) - t) / u(k, k) Next For i = 1 To n Text5.Text = Text5.Text & x(i) & vbCrLf Next End SubPrivate Sub Command3_Click() Dim y() As Single, x() As Single, b() As Single Dim n As Integer, k As Integer, i As Integer, j As Integer, s As Integer, t As Single n = Val(Text1.Text) ReDim y(n), x(n), b(n) b(1) = 1 For i = 2 To n b(i) = 0 Next i For i = 1 To 2 For k = 1 To n t = 0 For s = 1 To (k - 1) t = t + l(k, s) * y(s) Next y(k) = b(k) - t Next For k = n To 1 Step -1 t = 0 For s = k + 1 To n t = t + u(k, s) * x(s) Next x(k) = (y(k) - t) / u(k, k) Next For j = 1 To n b(j) = x(j) Next Next For i = 1 To n Text6.Text = Text6.Text & b(i) & vbCrLf NextEnd SubPrivate Sub Command4_Click() Dim y() As Single, x() As Single, b() As Single, v() As Single Dim n As Integer, k As Integer, i As Integer, j As Integer, s As Integer, t As Single n = Val(Text1.Text) ReDim y(n), x(n), b(n) b(1) = 1 For i = 2 To n b(i) = 0 Next i For i = 1 To 3 For k = 1 To n t = 0 For s = 1 To (k - 1) t = t + l(k, s) * y(s) Next y(k) = b(k) - t Next For k = n To 1 Step -1 t = 0 For s = k + 1 To n t = t + u(k, s) * x(s) Next x(k) = (y(k) - t) / u(k, k) Next For j = 1 To n b(j) = x(j) Next Next For i = 1 To n Text7.Text = Text7.Text & b(i) & vbCrLf NextEnd SubPrivate Sub Command5_Click() EndEnd SubPrivate Sub Command6_Click() Dim y() As Single, x() As Single, b() As Single, v() As Single Dim n As Integer, k As Integer, i As Integer, j As Integer, s As Integer, t As Single n = Val(Text1.Text) ReDim v(1 To n, 1 To n) ReDim y(1 To n) For i = 1 To n ReDim b(1 To n) b(i) = 1 For k = 1 To n t = 0 For s = 1 To k - 1 t = t + l(k, s) * y(s) Next y(k) = b(k) - t Next For k = n To 1 Step -1 t = 0 For s = k + 1 To n t = t + u(k, s) * v(s, i) Next v(k, i) = (y(k) - t) / u(k, k) Next Next For i = 1 To n For j = 1 To n Text8.Text = Text8.Text & v(i, j) & vbCrLf Next Next End Sub四:实验结果当n=10时A*x=b的解x1=【0 .5454544,-0.4999996,-3.971573E-07,2.5836E-07,-1.444715E-07,8.344654E-08,-5.188799E-08,2.407111E-08,-3.632159E-08,4.545457E-02】-1A2*x=b 的解为 x2=【0.5495862,-0.7727261,0.2499987,8.174827E-07,-4.631004E-07,3.457071E-07,-2.65427E-07,9.026667E-08,-2.272733E-02,4.958682E-02】-1A3*x=b的解为 x3=【0.6883911,-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保险培训讲师考试题库及答案
- 有用的企业面试题库及参考答案详解【夺分金卷】
- 足疗按摩师职业资格考试试题及答案
- 2025年直播电商主播与品牌合作模式创新与市场趋势报告
- 2025年老年健康管理长期照护服务模式与养老产业政策创新实践报告
- 2025年工业互联网平台生物识别技术在工业数据分析与挖掘中的应用报告
- 2025至2030年中国羊毛衫行业市场发展现状及投资方向研究报告
- 考点解析-华东师大版8年级下册期末试题含答案详解(基础题)
- 押题宝典执业药师资格证之《西药学专业二》试题含答案详解【轻巧夺冠】
- 2025版企业股权让与担保合同模板
- 2023年版人教版高一必修第一册物理测试题(含答案)
- 家长陪读承诺书【模板】
- 健康安全危险源识别、风险评估和风险控制表
- GB 4234.1-2017外科植入物金属材料第1部分:锻造不锈钢
- GB 19522-2004车辆驾驶人员血液、呼气酒精含量阈值与检验
- 深圳市失业人员停止领取失业保险待遇申请表样表
- 三年级上册音乐全册教材分析
- 提高输液执行单签字规范率品管圈汇报书模板课件
- SAP Analytics Cloud分析云解决方案
- 硬笔书法《浅谈书法》历史起源(课堂PPT)
- 员工自愿放弃社保公积金协议、自愿放弃社保协议书、自愿放弃社保声明书
评论
0/150
提交评论