导数(含绝对值) - 含答案_第1页
导数(含绝对值) - 含答案_第2页
导数(含绝对值) - 含答案_第3页
导数(含绝对值) - 含答案_第4页
导数(含绝对值) - 含答案_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1(本小题满分16分)已知函数其中e为自然对数的底.(1)当时,求曲线y=f(x)在x=1处的切线方程;(2)若函数y=f(x)有且只有一个零点,求实数b的取值范围;(3)当b0时,判断函数y=f(x)在区间(0,2)上是否存在极大值,若存在,求出极大值及相应实数b的取值范围.20(本小题满分16分)设为实数,函数。(1)当时,求函数在区间上的最大值和最小值;(2)求函数的单调区间。20. (本题满分16分)已知函数和函数.(1) 若方程在上有两个不同的解,求实数m的取值范围;(2) 若对任意,均存在,使得成立,求实数m的取值范围.21. 已知函数.(1)若a=1,求函数在区间的最大值;(2)求函数的单调区间;(3)若恒成立,求的取值范围解:(1)若a=1, 则 当时, ,, 所以在上单调增, . 2分 (2)由于, ()当时,则, 令,得(负根舍去), 且当时,;当时, 所以在上单调减,在上单调增.4分()当时,当时, , 令,得(舍),若,即, 则,所以在上单调增;若,即, 则当时,;当时,所以在区间上是单调减,在上单调增. 6分当时, ,令,得,记,若,即, 则,故在上单调减;若,即, 则由得,且,当时,;当时,;当 时,所以在区间上是单调减,在上单调增;在上单调减. 8分综上所述,当时,单调递减区间是 ,单调递增区间是;当时, 单调递减区间是,单调的递增区间是;当时, 单调递减区间是(0, )和,单调的递增区间是和. 10分(3)函数的定义域为 由,得 *()当时,不等式*恒成立,所以;()当时,所以; 12分()当时,不等式*恒成立等价于恒成立或恒成立令,则因为,所以,从而因为恒成立等价于,所以令,则再令,则在上恒成立,在上无最大值综上所述,满足条件的的取值范围是 16分22. 已知函数f(x)=|x-a|-Inx(a0)(1)若a=1,求f(x)的单调区间(2)若a0,求f(x)的单调区间解:已知函数f(x)=|x-a|-Inx(a0)(1)若a=1,求f(x)的单调区间f(x)=|x-a|-lnx,a=1则,f(x)=|x-1|-lnx,定义域为x0所以:x1时,f(x)=x-1-lnx则,f(x)=1-(1/x)=(x-1)/x0所以,f(x)单调递增;当0x1时,f(x)=1-x-lnx则,f(x)=-1-(1/x)=-1+(1/x)0所以,f(x)单调递减.(2)若a0,求f(x)的单调区间当xa时,f(x)=(x-a)-lnx则,f(x)=1-(1/x)=(x-1)/x此时:若x1,则f(x)单调递增;若0x1,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论