




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天使和恶魔天使和恶魔在一个无限大的棋盘上玩游戏。每一次,恶魔可以挖掉棋盘上的任意一个格子,天使则可以在棋盘上飞行 1000 步之后落地;如果天使落在了一个被挖掉的格子上,天使就输了。问题:恶魔能否困住天使(在天使周围挖一圈厚度 1000 的坑)?这是 Conway 大牛的又一个经典谜题。经常阅读这个 Blog 的人会发现, Conway 大牛的出镜率极高。不过这一次,Conway 真的是伤透了不少数学家的脑筋。作为一个很正常的组合游戏,天使与恶魔的问题竟然一直没能得到解决。目前已经有的结论是,如果天使每次只能移动一步,恶魔一定能获胜。不过,天使只要能每次飞两步,似乎就已经很无敌了。当然,魔鬼的优势也不小它不用担心自己走错,每多挖一个坑对于它来说都是有利的。话说回来, Conway 本人似乎仍然相信天使能赢他悬赏了 1000 美元征求恶魔必胜的证明,但只悬赏了 100 美元征求天使必胜的证明。Gilbreath 猜想从小到大依次列出所有的质数:2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, .求出相邻两项之差:1, 2, 2, 4, 2, 4, 2, 4, 6, 2, .现在,再次求出所得序列中相邻两项之差,又会得到一个新的序列:1, 0, 2, 2, 2, 2, 2, 2, 4, .重复对所得序列进行这样的操作,我们还可以依次得到1, 2, 0, 0, 0, 0, 0, 2, .1, 2, 0, 0, 0, 0, 2, .1, 2, 0, 0, 0, 2, .1, 2, 0, 0, 2, .大家会发现一个有趣的规律:每行序列的第一个数都是 1。某日,数学家 Norman L. Gilbreath 闲得无聊,在餐巾上不断对质数序列求差,于是发现了上面这个规律。Gilbreath 的两个学生对前 64 419 行序列进行了检验,发现这个规律始终成立。1958 年,Gilbreath 在一个数学交流会上提出了他的发现,Gilbreath 猜想由此诞生。这个规律如此之强,很少有人认为猜想不成立。1993 年,Andrew Odlyzko对 10 000 000 000 000 以内的质数(也就是 346 065 536 839 行)进行了检验,也没有发现反例。不过,这一看似简单的问题,几十年来硬是没人解决。3x + 1 问题从任意一个正整数开始,重复对其进行下面的操作:如果这个数是偶数,把它除以 2 ;如果这个数是奇数,则把它扩大到原来的 3 倍后再加 1 。序列是否最终总会变成 4, 2, 1, 4, 2, 1, 的循环?这个问题可以说是一个坑乍看之下,问题非常简单,突破口很多,于是数学家们纷纷往里面跳;殊不知进去容易出去难,不少数学家到死都没把这个问题搞出来。已经中招的数学家不计其数,这可以从 3x + 1 问题的各种别名看出来: 3x + 1 问题又叫 Collatz 猜想、 Syracuse 问题、 Kakutani 问题、 Hasse 算法、 Ulam 问题等等。后来,由于命名争议太大,干脆让谁都不沾光,直接叫做 3x + 1 问题算了。3x + 1 问题不是一般的困难。这里举一个例子来说明数列收敛有多么没规律。从 26 开始算起, 10 步就掉入了421 陷阱:26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 但是,从 27 开始算起,数字会一路飙升到几千多,你很可能会一度认为它脱离了421 陷阱;但是,经过上百步运算后,它还是跌了回来:27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 随机 01 串的最长公共子序列如果从数字序列 A 中删除一些数字就能得到数字序列 B ,我们就说 B 是 A 的子序列。例如, 110 是 010010 的子序列,但不是 001011 的子序列。两个序列的公共子序列有很多,其中最长的那个就叫做最长公共子序列。 随机产生两个长度为 n 的 01 序列,其中数字 1 出现的概率是 p ,数字 0 出现的概率是 1 - p 。用 Cp(n) 来表示它们的最长公共子序列的长度,用 Cp 来表示 Cp(n) / n 的极限值。关于 Cp 的存在性,有一个非常巧妙的证明;然而,这个证明仅仅说明了 Cp 的存在性,它完全没有给计算 Cp 带来任何有用的提示。 即使是 C1/2 的值,也没人能成功算出来。 Michael Steele 猜想 C1/2 = 2/(1 + 2) 0.828427 。后来, V. Chvtal 和 D. sankoff 证明了 0.773911 C1/2 0.837623 ,看上去 Michael Steele 的猜想似乎很可能是对的。 2003 年, George Lueker 证明了 0.7880 C1/2 8 的情况究竟是否有解,目前尚无定论。(3/2)n的小数部分假如 n 是正整数, (3/2)n的小数部分在 0, 1 区间内稠密吗? 目前,我们已经知道,对于任意无理数 a , n a 的小数部分一定在 0, 1 区间内稠密。我们也已经知道,对于几乎所有的 t ,t (3/2)n的小数部分在 0, 1 区间内稠密。我们还知道,对于几乎所有的实数 b 1 , bn的小数部分在 0, 1 区间内稠密。不过,这都还不足以解决我们刚刚提到的问题。Singmaster 猜想在杨辉三角中,数字 1 出现了无穷多次。除了数字 1 以外,哪个数字出现的次数最多呢? 6 出现了 3 次,不过不算多。 10 出现了 4 次,不过也不算多。 120 出现了 6 次,算多了吧?还不算多。目前已知的出现次数最多的数是 3003 ,它同时等于 C(3003, 1) 、 C(78, 2) 、 C(15, 5) 、 C(14, 6) ,在杨辉三角中出现了 8 次。有没有出现次数更多的数,目前仍然是一个未解之谜。真正精彩的来了。如果把正整数 a 在杨辉三角中出现的次数记作 N(a) ,那么函数 N(a) 是什么级别上涨的呢? 1971 年,David Singmaster 证明了 N(a) = O(log a) ,即 N(a) 最多是对数级别上涨的。他同时猜想 N(a) = O(1) ,即 N(a) 有一个上限。这也就是 Singmaster 猜想。由于我们一直没能找到出现次数超过 8 次的数,因而这个上界很可能就是 8 。不过, Singmaster 猜测这个上界更可能是 10 或者 12 。Erds 认为,Singmaster 的猜想很可能是正确的,但证明起来会非常困难。目前最好的结果是,N(a) = O(log a log log log a) / (log log a)3) 。重构猜想这可以说是图论中最重要的猜想之一,然而我却是最近才听说。这个猜想叫做“重构猜想”(reconstruction conjecture),最早是由 Kelly 和 Ulam 提出的。它的叙述非常简单:对于某个顶点数为 n 的图(n 3),如果已知它的每一个顶点为 n - 1 的子图,是否足以将原图重构出来?让我们把这个问题变得形式化一些。假设 A 是一个至少有三个顶点的图(顶点无标号),把它的顶点数记作 n 。我们把去掉其中一个顶点后可能得到的所有 n 个子图所组成的多重集(允许重复元素的集合)叫做图 A 的 n - 1 子图集。重构猜想就是问,如果 A 、 B 两个图拥有完全相同的 n - 1 子图集,那么这两个图是否也一定同构?目前已经发现,有很多类型的图都是可以重构的,比如完全图(显然)、不连通图、树等等。所有图都是可重构的吗?这是图论中最大的谜题之一。和其他的数学猜想不一样,如果要用计算机来检验这个猜想,其计算量相当惊人。目前,计算机仅仅验证了 n 11 的情况。Kusner 猜想定义 n 维空间中 P(p1, p2, , pn) 和 Q(q1, q2, , qn) 两点之间的 Manhattan 距离为 |p1 - q1| + |p2 - q2| + + |pn - qn| ,直观地说就是在 n 维网格中从 P 到 Q 的最短路径长度。某日,木遥告诉了我一个与此相关的数学未解之谜:在 n 维空间中,最多可以有多少个 Manhattan 距离两两相等的点?容易看出,这样的点至少可以有 2n 个,例如三维空间中 (1, 0, 0) 、 (-1, 0, 0) 、 (0, 1, 0) 、 (0, -1, 0) 、 (0, 0, 1) 、 (0, 0, -1) 就是满足要求的 6 个点。大家肯定会想,这应该就是点数最少的方案了吧?不过,真要证明起来可没那么容易。1983 年,Robert Kusner 猜想, n 维空间中 Manhattan 距离两两相等的点最多也只能有 2n 个,这也就是现在所说的 Kusner 猜想。目前人们已经证明,当 n 4 时, Kusner 猜想是正确的。当 n 4 时呢?虽然大家相信这个猜想也应该是正确的,但还没有人能够证明。有趣的是,在很多其他的度量空间下,同类型的问题却并没有这么棘手。如果把距离定义为标准的 Euclidean 距离,那么 n 维空间中显然最多有 n + 1 个等距点;如果把距离定义为 Chebyshev 距离(即所有 |pi - qi| 中的最大值),问题的解则是 2n ,即 n 维坐标系中单位立方体的 2n 个顶点。一旦换作 Manhattan 距离,问题就迟迟不能解决,这还真有些出人意料。1、求 (1/1)3+(1/2)3+(1/3)3+(1/4)3+(1/5)3+ +(1/n)3=? 更一般地: 当k为奇数时 求 (1/1)k+(1/2)k+(1/3)k+(1/4)k+(1/5)k+ +(1/n)k=? 背景: 欧拉求出: (1/1)2+(1/2)2+(1/3)2+(1/4)2+(1/5)2+ +(1/n)2=(2)/6 并且当k为偶数时的表达式。 2、e+的超越性 背景 此题为希尔伯特第7问题中的一个特例。 已经证明了e的超越性,却至今未有人证明e+的超越性。 3、素数问题。 证明: (s)=1+(1/2)s+(1/3)s+(1/4)s+(1/5)s + (s属于复数域) 所定义的函数(s)的零点,除负整实数外,全都具有实部1/2。 背景: 此即黎曼猜想。也就是希尔伯特第8问题。 美国数学家用计算机算了(s)函数前300万个零点确实符合猜想。 希尔伯特认为黎曼猜想的解决能够使我们严格地去解决歌德巴赫猜想(任一偶数可以分解为两素数之和)和孪生素数猜想(存在无穷多相差为2的素数)。 引申的问题是:素数的表达公式?素数的本质是什么? 4、 存在奇完全数吗? 背景: 所谓完全数,就是等于其因子的和的数。 前三个完全数是: 6=1+2+3 28=1+2+4+7+14 496=1+2+4+8+16+31+62+124+248 目前已知的32个完全数全部是偶数。 1973年得到的结论是如果n为奇完全数,则: n1050 5、 除了8=23,9=32外,再没有两个连续的整数可表为其他正整数的方幂了吗? 背景: 这是卡塔兰猜想(1842)。 1962年我国数学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年基层医疗卫生机构信息化建设中的医疗信息化产业链协同发展策略报告
- 2025年新能源汽车充电基础设施投资策略:充电站投资效益与可持续发展报告001
- 教师招聘之《小学教师招聘》考前冲刺练习题带答案详解(达标题)
- 教师招聘之《小学教师招聘》高分题库及完整答案详解(名师系列)
- 教师招聘之《幼儿教师招聘》综合检测提分附参考答案详解【完整版】
- 教师招聘之《小学教师招聘》考前冲刺测试卷附参考答案详解【黄金题型】
- 2025年教师招聘之《小学教师招聘》试题标准卷附答案详解
- 教师招聘之《幼儿教师招聘》考前冲刺模拟题库提供答案解析附答案详解(精练)
- 教师招聘之《幼儿教师招聘》模拟题库附参考答案详解【夺分金卷】
- 押题宝典演出经纪人之《演出经纪实务》考试题库附参考答案详解【能力提升】
- 单元考点必刷卷 (一)(含答案)我上学啦 2025-2026学年北师大版一年级数学上册
- 2025-2026学年人教版(2024)小学体育与健康三年级(全一册)教学设计(附目录P114)
- 河南省天一联考2026届高三年级开学联考语文试卷(含答案解析)
- 遴选笔试真题及答案
- 2025年消防经济学试题及答案
- 2025-2026学年人教版(2024)小学美术三年级上册教学计划及进度表
- 2025年秋期新教材人音版三年级上册小学音乐教学计划+进度表
- 医疗科室外包合同协议书
- 基于核心素养的中小学安全教育课程设计与实施路径
- 2025年医院安全员安全技能测试
- 网络安全技术培训
评论
0/150
提交评论