


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2013年普通高等学校夏季招生全国统一考试数学文史类(天津卷)第卷18(2013天津,文18)(本小题满分13分)设椭圆(ab0)的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.(1)求椭圆的方程;(2)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点若8,求k的值18解:(1)设F(c,0),由,知.过点F且与x轴垂直的直线为xc,代入椭圆方程有,解得,于是,解得b,又a2c2b2,从而a,c1,所以椭圆的方程为.(2)设点C(x1,y1),D(x2,y2),由F(1,0)得直线CD的方程为yk(x1),由方程组消去y,整理得(23k2)x26k2x3k260.求解可得x1x2,x1x2.因为A(,0),B(,0),所以(x1,y1)(x2,y2)(x2,y2)(x1,y1)62x1x22y1y262x1x22k2(x11)(x21)6(22k2)x1x22k2(x1x2)2k2.由已知得8,解得k.19(2013天津,文19)(本小题满分14分)已知首项为的等比数列an的前n项和为Sn(nN*),且2S2,S3,4S4成等差数列(1)求数列an的通项公式;(2)证明(nN*)19 (1)解:设等比数列an的公比为q,因为2S2,S3,4S4成等差数列,所以S32S24S4S3,即S4S3S2S4,可得2a4a3,于是.又a1,所以等比数列an的通项公式为.(2)证明,当n为奇数时,随n的增大而减小,所以.当n为偶数时,随n的增大而减小,所以.故对于nN*,有.20(2013天津,文20)(本小题满分14分)设a2,0,已知函数(1)证明f(x)在区间(1,1)内单调递减,在区间(1,)内单调递增;(2)设曲线yf(x)在点Pi(xi,f(xi)(i1,2,3)处的切线相互平行,且x1x2x30.证明x1x2x3.20证明:(1)设函数f1(x)x3(a5)x(x0),f2(x)(x0),f1(x)3x2(a5),由a2,0,从而当1x0时,f1(x)3x2(a5)3a50,所以函数f1(x)在区间(1,0内单调递减f2(x)3x2(a3)xa(3xa)(x1),由于a2,0,所以当0x1时,f2(x)0;当x1时,f2(x)0.即函数f2(x)在区间0,1)内单调递减,在区间(1,)内单调递增综合,及f1(0)f2(0),可知函数f(x)在区间(1,1)内单调递减,在区间(1,)内单调递增(2)由(1)知f(x)在区间(,0)内单调递减,在区间内单调递减,在区间内单调递增因为曲线yf(x)在点Pi(xi,f(xi)(i1,2,3)处的切线相互平行,从而x1,x2,x3互不相等,且f(x1)f(x2)f(x3)不妨设x10x2x3,由(a5)(a3)x2a(a3)x3a,可得(a3)(x2x3)0,解得x2x3,从而0x2x3.设g(x)3x2(a3)xa,则g(x2)g(0)a.由(a5)g(x2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建省福州第四中学2026届高一化学第一学期期末复习检测模拟试题含解析
- 桥梁专业知识培训课件
- 2026届河北省巨鹿中学高一化学第一学期期末监测模拟试题含解析
- 2025年机关事务管理面试宝典门诊部岗位面试模拟题及解析
- 2025年徐州市中考生物试题卷(含答案及解析)
- 2025江苏高校大学《辅导员》招聘考试题库及答案
- 2025年初级摄影课程学员面试题
- 2025年度注册验船师资格考试船舶检验法律法规考前冲刺模拟题及答案(网页版)
- 2025年验船师考试(C级船舶检验专业实务)考前模拟试题及答案二
- 北京市门头沟区2024-2025学年八年级上学期第二次月考生物考试题目及答案
- 陕西省特种设备隐患排查清单(2025年)
- 货款转让协议书
- 2025年内蒙古鄂尔多斯一中高考生物倒计时模拟卷含解析
- 2025CACA子宫颈癌诊疗指南解读
- 绿色建筑概论 课件全套 第1-11章 绿色建筑概述-绿色建筑运营与维护
- 2025医务人员手卫生规范
- 医务人员行为规范
- 光伏电站安全培训
- GB/T 35267.4-2025清洗消毒器第4部分:内镜清洗消毒器
- 职工安置方案模板
- DB45T 1056-2014 土地整治工程 第2部分:质量检验与评定规程
评论
0/150
提交评论