双曲线专题例题.doc_第1页
双曲线专题例题.doc_第2页
双曲线专题例题.doc_第3页
双曲线专题例题.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

双曲线专题例题 重难点突破1.注意定义中“陷阱”问题1:已知,一曲线上的动点到距离之差为6,则双曲线的方程为 2.注意焦点的位置问题2:双曲线的渐近线为,则离心率为 热点考点题型探析考点1 双曲线的定义及标准方程【新题导练】1.设P为双曲线上的一点F1、F2是该双曲线的两个焦点,若|PF1|:|PF2|=3:2,则PF1F2的面积为( )AB12CD242.如图2所示,为双曲线的左焦点,双曲线上的点与关于轴对称,则的值是( )A9 B16 C18 D27 3. P是双曲线左支上的一点,F1、F2分别是左、右焦点,且焦距为2c,则的内切圆的圆心的横坐标为( )(A)(B)(C)(D) 题型2 求双曲线的标准方程例2 已知双曲线C与双曲线=1有公共焦点,且过点(3,2).求双曲线C的方程【新题导练】4.已知双曲线的渐近线方程是,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ; 5.以抛物线的焦点为右焦点,且两条渐近线是的双曲线方程为_.6.已知点,动圆与直线切于点,过、与圆相切的两直线相交于点,则点的轨迹方程为A BC(x 0) D考点2 双曲线的几何性质题型1 求离心率或离心率的范围例3 已知双曲线的左,右焦点分别为,点P在双曲线的右支上,且,则此双曲线的离心率e的最大值为 【新题导练】7.已知双曲线的一条渐近线方程为,则该双曲线的离心率为 8. 已知双曲线的右顶点为E,双曲线的左准线与该双曲线的两渐近线的交点分别为A、B两点,若AEB=60,则该双曲线的离心率e是( )A B2 C或2 D不存在题型2 与渐近线有关的问题例4若双曲线的焦点到渐近线的距离等于实轴长,则双曲线的离心率为 ( )A. B. C. D.【新题导练】9. 双曲线的渐近线方程是 ( )A. B. C. D. 10.焦点为(0,6),且与双曲线有相同的渐近线的双曲线方程是 ( )A B C D(2)渐近线双曲线与直线相约天涯【例3】过点(1,3)且渐近线为的双曲线方程是(3)共轭双曲线 虚、实易位的孪生弟兄将双曲线的实、虚轴互易,所得双曲线方程为:.这两个双曲线就是互相共轭的双曲线.它们有相同的焦距而焦点的位置不同;它们又有共同的渐近线而为渐近线所界定的范围不一样;它们的许多奇妙性质在解题中都有广泛的应用. 通法 特法 妙法(1)方程法为解析几何正名解析法的指导思想是函数方程思想,其主要手段是列、解方程、方程组或不等式.【例6】如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为( )(A) (B) (C) (D)(2)转换法为解题化归立意【例7】直线过双曲线的右焦点,斜率k=2.若与双曲线的两个交点分别在左右两支上,则双曲线的离心率e的范围是 ( ) A.e B.1e C.1e(3)几何法使数形结合带上灵性【例8】设为双曲线上的一点,是该双曲线的两个焦点,若,则的面积为( )A B C. D(4)设而不求与借舟弃舟同理减少解析几何计算量的有效方法之一便是设而不求.请看下例:【例9】双曲线的一弦中点为(2,1),则此弦所在的直线方程为 (

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论