




已阅读5页,还剩41页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
考点34 离散型随机变量的均值与方差(理)【高考再现】热点一、频率分布直方图的绘制与应用1(2012年高考(辽宁理)电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.()根据已知条件完成下面的列联表,并据此资料你是否认为“体育迷”与性别有关?()将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望和方差.附:【解析】 (I)由频率颁布直方图可知,在抽取的100人中,“体育迷”有25人,从而22列联表如下: 由22列联表中数据代入公式计算,得: 因为3.030.B=.C.D与的大小关系与、的取值有关.解析2(2012年高考(天津理)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.()求这4个人中恰有2人去参加甲游戏的概率: ()求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率: ()用分别表示这4个人中去参加甲、乙游戏的人数,记,求随机变量的分布列与数学期望. (1)这4个人中恰有2人去参加甲游戏的概率为. (2)设“这4人中去参加甲游戏的人数大于去参加乙游戏的人数”不事件,则,由于与互斥,故 所以这4人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为. 3(2012年高考(浙江理)已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和.()求X的分布列;()求X的数学期望E(X).【解析】4(2012年高考(重庆理)(本小题满分13分,()小问5分,()小问8分.)甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.() 求甲获胜的概率;() 求投篮结束时甲的投篮次数的分布列与期望综上知,有分布列123从而,(次)5(2012年高考(四川理)某居民小区有两个相互独立的安全防范系统(简称系统)和,系统和在任意时刻发生故障的概率分别为和.()若在任意时刻至少有一个系统不发生故障的概率为,求的值;()设系统在3次相互独立的检测中不发生故障的次数为随机变量,求的概率分布列及数学期望.解析(1)设:“至少有一个系统不发生故障”为事件C,那么 1-P(C)=1-P= ,解得P=4 分 所以,随机变量的概率分布列为:0123 P 故随机变量X的数学期望为: E=0 .6(2012年高考(陕西理)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:从第一个顾客开始办理业务时计时.(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)表示至第2分钟末已办理完业务的顾客人数,求的分布列及数学期望.【解析】:设表示顾客办理业务所需的时间,用频率估计概率,得的分布列如下:123450.10.40.30.10.1(1)表示事件“第三个顾客恰好等待4分钟开始办理业务”,则事件A对应三种情形: 第一个顾客办理业务所需的时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;第一个和第二个顾客办理业务所需的时间均为2分钟. 所以 7(2012年高考(山东理)先在甲、乙两个靶.某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.()求该射手恰好命中一次得的概率;()求该射手的总得分的分布列及数学期望.【解析】:(); () , X012345PEX=0+1+2+3+4+5=.8(2012年高考(江西理)如图,从A1(1,0,0),A2(2,0,0),B1(0,2,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个 “立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0).(1)求V=0的概率;(2)求V的分布列及数学期望.【解析】 (1)从6个点中随机地选取3个点共有种选法,选取的3个点与原点O在同一个平面上的选法有种,因此V=0的概率 (2)V的所有可能值为,因此V的分布列为V0P由V的分布列可得: EV=9(2012年高考(江苏)设为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时,.(1)求概率;(2)求的分布列,并求其数学期望.10(2012年高考(湖南理)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)302510结算时间(分钟/人)11.522.53已知这100位顾客中的一次购物量超过8件的顾客占55%.()确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;()若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2 钟的概率.(注:将频率视为概率)【解析】(1)由已知,得所以 该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率得 的分布为 X11.522.53PX的数学期望为 . 11(2012年高考(湖北理)根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:降水量X工期延误天数02610历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9. 求:()工期延误天数的均值与方差; ()在降水量X至少是的条件下,工期延误不超过6天的概率. 所以的分布列为:026100.30.40.20.1 12(2012年高考(大纲理)(注意:在试题卷上作答无效)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为,各次发球的胜负结果相互独立,.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率;(2)表示开始第4次发球时乙的得分,求的期望. ()由题意. ; 13(2012年高考(安徽理)某单位招聘面试,每次从试题库随机调用一道试题,若调用的是类型试题,则使用后该试题回库,并增补一道类试题和一道类型试题入库,此次调题工作结束;若调用的是类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有道试题,其中有道类型试题和道类型试题,以表示两次调题工作完成后,试题库中类试题的数量.()求的概率;()设,求的分布列和均值(数学期望).【方法总结】正确求出分布列是求均值和方差的前提,有时善于使用公式,可简化计算。【考点剖析】一明确要求1.理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性2.了解两点分布和超几何分布的意义,并能进行简单的应用.三规律总结基础梳理1频率分布直方图(1)通常我们对总体作出的估计一般分成两种:一种是用样本的频率分布估计总体的分布;另一种是用样本的数字特征估计总体的数字特征(2)作频率分布直方图的步骤求极差(即一组数据中最大值与最小值的差)决定组距与组数将数据分组列频率分布表画频率分布直方图(3)在频率分布直方图中,纵轴表示,数据落在各小组内的频率用各小长方形的面积表示各小长方形的面积总和等于1.4样本方差与标准差设样本的元素为x1,x2,xn,样本的平均数为,(1)样本方差:s2(x1)2(x2)2(xn)2(2)样本标准差:s .两个异同(1)众数、中位数与平均数的异同众数、中位数及平均数都是描述一组数据集中趋势的量,平均数是最重要的量由于平均数与每一个样本数据有关,所以,任何一个样本数据的改变都会引起平均数的改变,这是中位数、众数都不具有的性质. 众数考查各数据出现的频率,其大小只与这组数据中的部分数据有关当一组数据中有不少数据多次重复出现时,其众数往往更能反映问题某些数据的变动对中位数可能没有影响中位数可能出现在所给数据中,也可能不在所给数据中当一组数据中的个别数据变动较大时,可用中位数描述其集中趋势【基础练习】1. (教材习题改编)设随机变量X的分布列如下:X1234Pp 则p为 () A. B. C. D.【解析】:由p1,p.【答案】B2(经典习题)抛掷2颗骰子,所得点数之和记为X,那么X4表示的随机试验结果是 ()A2颗都是4点B1颗是1点,另一颗是3点C2颗都是2点D1颗是1点,另1颗是3点,或者2颗都是2点【解析】:X4表示的随机试验结果是1颗1点,另1颗3点或者两颗都是2点【答案】: D4(经典习题)设随机变量X等可能取值1,2,3,n,如果P(X),且各局胜负相互独立,已知第二局比赛结束时比赛停止的概率为(I) 求p的值.()设表示比赛停止时比赛的局数,求随机变量的分布列和数学期望E.二能力拔高 1. 【2011学年浙江省第二次五校联考理】甲、乙两个篮球队进行比赛,比赛采用5局3胜制(即先胜3局者获胜)若甲、乙两队在每场比赛中获胜的概率分别为和,记需要比赛的场次为,则 【解析】可以取的值有3、4、5;【答案】2. (2012理科数学试卷) 盒中装有个零件,其中个是使用过的,另外个未经使用. 从盒中随机抽取个零件,使用后放回盒中,记此时盒中使用过的零件个数为X,则X的数学期望 E(X)= _3. (北京市朝阳区2012届高三年级第二次综合练习理)(本小题满分13分)一个袋子中装有大小形状完全相同的编号分别为1,2,3,4,5的5个红球与编号为1,2,3,4的4个白球,从中任意取出3个球()求取出的3个球颜色相同且编号是三个连续整数的概率;()求取出的3个球中恰有2个球编号相同的概率;()记X为取出的3个球中编号的最大值,求X的分布列与数学期望()X的取值为2,3,4,5.,. 11分所以X的分布列为X2345PX的数学期望. 13分.4. (2012东城区普通高中示范校高三综合练习(二)理)(本小题满分13分)某中学选派40名同学参加北京市高中生技术设计创意大赛的培训,他们参加培训的次数统计如表所示:培训次数123参加人数51520(1)从这40人中任意选3名学生,求这3名同学中至少有2名同学参加培训次数恰好相等的概率;(2)从40人中任选两名学生,用表示这两人参加培训次数之差的绝对值,求随机变量的分布列及数学期望.5(2012年石家庄市高中毕业班第二次模拟考试理) (本小题满分12分)我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了 100位居民某年的月均用水量(单位:t),制作了频率分布直方图(I)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整;(II)用样本估计总体,如果希望80%的居民每月的用水量不超出标准&则月均用水量的最低标准定为多少吨,并说明理由;(III)若将频率视为概率,现从该市某大型生活社区随机调查3位居民的月均用水量(看作有放回的抽样),其中月均用水量不超过(II)中最低标准的人数为x,求x的分布列和均值.分布列为012310分12分6(河北省唐山市20112012学年度高三年级第二次模拟考试理)(本小题满分12分) 某篮球队甲、乙两名队员在本赛零已结束的8场比赛中得分统计的茎叶图如下: (I)比较这两名队员在比赛中得分的均值和方差的大小; (II)以上述数据统计甲、乙两名队员得分超过15分的频率作为概率,假设甲、乙两名队员在同一场比赛中得分多少互不影响,预测在本赛季剩余的2场比赛中甲、乙两名队员得分均超过15分次数X的分布列和均值7(中原六校联谊2012年高三第一次联考理)(本小题满分12分)某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩共分五组,得到频率分布表如下表所示。(1)请求出位置相应的数字,填在答题卡相应位置上,并补全频率分布直方图;(2)为了能选出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取12人进入第二轮面试,求第3、4、5组中每组各抽取多少人进入第二轮的面试;假定考生“XXX”笔试成绩为178分,但不幸没入选这100人中,那这样的筛选方法对该生而言公平吗?为什么?(3)在(2)的前提下,学校决定在12人中随机抽取3人接受“王教授”的面试,设第4组中被抽取参加“王教授”面试的人数为,求的分布列和数学期望【解析】(2)第组共名学生,现抽取人,因此第组抽取的人数为:人,第组抽取的人数为:人,第组抽取的人数为:人. 7分公平:因为从所有的参加自主考试的考生中随机抽取人,每个人被抽到的概率是相同的. 8分(只写“公平”二字,不写理由,不给分)(3)的可能取值为 的分布列为:11分 12分8(湖北省武汉市2012届高三下学期4月调研测试理)(本小题满分12分)为增强市民节能环保意识,某市面向全市征召义务宣传志愿者现从符合条件的500名志愿者中随机抽取100名志愿者,他们的年龄情况如下表所示()频率分布表中的、位置应填什么数据?并在答题卡中补全频率分布直方图(如图),再根据频率分布直方图估计这500名志愿者中年龄在30,35)岁的人数;()在抽出的100名志愿者中按年龄再采用分层抽样法抽取20人参加中心广场的宣传活动,从这20人中选取2名志愿者担任主要负责人,记这2名志愿者中“年龄低于30岁”的人数为X,求X的分布列及数学期望三提升自我1. (2012年高三教学测试(二)理)甲、乙两人进行“石头、剪子、布”游戏开始时每人拥有3张卡片,每一次“出手”(双方同时):若分出胜负,则负者给对方一张卡片;若不分胜负,则不动卡片规定:当一人拥有6张卡片或“出手”次数达到6次时游戏结束设游戏结束时“出手”次数为,则 2. (台州2012高三调研试卷理)【解析】设2对孪生兄弟分别为A1、A2、B1、B2,的可能取值有0,1,2,【答案】3. (北京市东城区2011-2012学年度第二学期高三综合练习(二)理)(本小题共13分)某公园设有自行车租车点, 租车的收费标准是每小时2元(不足1小时的部分按1小时计算).甲、乙两人各租一辆自行车,若甲、乙不超过一小时还车的概率分别为;一小时以上且不超过两小时还车的概率分别为;两人租车时间都不会超过三小时.()求甲、乙两人所付租车费用相同的概率;()设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望. 4(2012年长春市高中毕业班第二次调研测试理)(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数根据此数据作出了频数与频率的统计表和频率分布直方图如下:分组频数频率50.251210.05合计M1求出表中、及图中的值;若该校高一学生有360人,试估计他们参加社区服务的次数在区间内的人数;学校决定对参加社区服务的学生进行表彰,对参加活动次数在区间的学生发放价值80元的学习用品,对参加活动次数在区间的学生发放价值60元的学习用品,对参加活动次数在区间的学生发放价值40元的学习用品,对参加活动次数在区间的学生发放价值20元的学习用品,在所取样本中,任意取出2人,并设为此二人所获得用品价值之差的绝对值,求的分布列与数学期望. 所以的分布列为:0204060(10分) (12分)5(2012洛阳示范高中联考高三理)(本小题满分12分)某高中为了推进新课程改革,满足不同层次学生的需求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座。(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各学科讲座各天的满座的概率如下表:根据上表:(1)求数学辅导讲座在周一、周三、周五都不满座的概率; (2)设周三各辅导讲座满座的科目数为,求随机变量的分布列和数学期望。所以随机变量的分布列如下:01234510分故12分.6(山东省济南市2012届高三3月(二模)月考理)(本小题满分12分)一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:(1) 得60分的概率;(2) 所得分数的分布列和数学期望.7(长安一中、高新一中、交大附中、师大附中、西安中学2012届第三次模拟理)(本小题12分) “剪刀、石头、布”游戏的规则是:出拳之前双方齐喊口令,然后在话音刚落时同时出拳,握紧的拳头代表“石头”,食指和中指伸出代表“剪刀”,五指伸开代表“布”“石头”胜“剪刀”, “剪
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年国际商务谈判师综合能力考核试题及答案解析
- 2025年泵站招聘水管员模拟题集
- 课件中Flash尺寸调整
- 2025年实验室信息安全基础测试题集
- 2025年安全培训体系构建题集
- 2025年宠物医疗AI工程师核心笔试题
- 2025年机械制图员面试常见问题及标准答案集
- 2025年河道保洁员招聘笔试冲刺模拟题
- 2025年消防安全应急演练考核题及答案
- 2025年安全生产评估多选题及答案
- 安顺康闽果食品有限公司年产240吨年糕生产线建设项目环评报告
- 邹平梁邹矿业有限公司矿山地质环境保护与土地复垦方案
- 学校宿舍楼建筑装饰工程招标控制价编制技术经济分析
- 外脚手架监理实施细则
- 高考688个高频词汇 word版
- 氟化工艺课件
- 项目融资概述课件
- 社会调查与统计第四章抽样
- 《国际结算(第五版)》第九章 跨境贸易人民币结算
- 2022年云南师范大学辅导员招聘考试试题及答案解析
- 塑胶操场监理实施细则
评论
0/150
提交评论