苏科版数学九上第五章《圆》导学案.doc_第1页
苏科版数学九上第五章《圆》导学案.doc_第2页
苏科版数学九上第五章《圆》导学案.doc_第3页
苏科版数学九上第五章《圆》导学案.doc_第4页
苏科版数学九上第五章《圆》导学案.doc_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

九年级数学学科导学案编者:新河中学 第14周第1课时内容 5.1 圆 (1 ) 课型:新授 一、学习目标1、理解圆的描述定义,了解圆的集合定义. 2、经历探索点与圆的位置关系的过程,以及如何确定点和圆的三种位置关系 3、初步渗透数形结合和转化的数学思想,并逐步学会用数学的眼光和运动、集合的观点去认识世界、解决问题.学习重难点 会确定点和圆的位置关系.二、知识准备:1、说出几个与圆有关的成语和生活中与圆有关的物体。思考:车轮为什么做成圆形?2、爱好运动的小华、小强、小兵三人相邀搞一次掷飞镖比赛。他们把靶子钉在一面土墙上,规则是谁掷出落点离红心越近,谁就胜。如下图中A、B、C三点分别是他们三人某一轮掷镖的落点,你认为这一轮中谁的成绩好?三、知识梳理:本节课你有何收获?四、达标检测 1、O的半径10cm,A、B、C三点到圆心的距离分别为8cm、10cm、12cm,则点A、B、C与O的位置关系是:点A在 ;点B在 ;点C在 2、O的半径6cm,当OP=6时,点A在 ;当OP 时点P在圆内;当OP 时,点P不在圆外。3、到点P的距离等于6厘米的点的集合是_4、已知AB为O的直径P为O 上任意一点,则点关于AB的对称点P与O的位置为( ) (A)在O内 (B)在O 外 (C)在O 上 (D)不能确定5、如图已知矩形ABCD的边AB=3厘米,AD=4厘米(直接写出答案)(1)以点A为圆心,3厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(2)以点A为圆心,4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(3)以点A为圆心,5厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?6如图,在直角三角形ABCD中,角C为直角,AC=4,BC=3,E,F分别为AB,AC的中点。以B为圆心,BC为半径画圆,试判断点A,C,E,F与圆B的位置关系。7已知:如图,BD、CE是ABC的高,M为BC的中点试说明点B、C、D、E在以点M为圆心的同一个圆上ABCEFM九年级数学学科导学案编者:新河中学 第14周第1课时内容 5.1 圆 (2 ) 课型:新授 一、学习目标:1、理解圆的有关概念 2、了解“同圆或等圆的半径相等”并能用之解决问题3、体验圆与直线形的联系二、知识准备: 前一节课学习了圆的有关概念,探索了点与圆的位置关系.这一节课将进一步学习与圆有关的概念,为今后研究圆的有关性质打好基础.三、知识梳理:小结:本节课你有什么收获?请谈谈你的看法。四、 达标检测 : 一 判断:1 直径是弦,弦是直径。 ( )2 半圆是弧,弧是半圆。 ( )3 周长相等的两个圆是等圆。 ( )4 长度相等的两条弧是等弧。 ( )5 同一条弦所对的两条弧是等弧。( )6 在同圆中,优弧一定比劣弧长。( )二 、解答1 如图,AB是O的直径,AC是弦,D是AC的中点,若OD=4,求BC。2 如图, AB是O的直径,点C在O上, CDAB, 垂足为D, 已知CD=4, OD=3, 求AB的长.3. 如图, AB是O的直径, 点C在O上, A=350, 求B的度数.4. 已知:如图,点O是EPF的平分线的一点,以O为圆心的圆和EPF的两边分别交于点A、B和C、D.求证: OBA=OCD九年级数学学科导学案编者:新河中学 第15 周第1课时 课题:5.2圆的对称性(1) 课型:新课 一、学习目标:1 理解圆的对称性和中心对称性。2利用圆的旋转不变性,研究圆心角、弧、弦之间的相互关系定理及其简单应用。学习重难点利用圆的旋转不变性,研究圆心角、弧、弦之间的相互关系及其简单应用。二、知识准备圆既是_,又是_,它的对称中心是_三、知识梳理本节课你有什么收获?请谈谈你的看法。四、达标检测 BDAC C1.如图,在O中, = ,1=30,则2=_12ABD2. 一条弦把圆分成1:3两部分,则劣弧所对的圆心角为_。3. O中,直径ABCD弦,则BOD=_。4 在O中,弦AB的长恰好等于半径,弦AB所对的圆心角为 5如图,AB是直径,BOC40,AOE的度数是 。6已知,如图,AB是O的直径,M,N分别为AO,BO的中点,CMAB,DNAB,垂足分别为M,N。求证:AC=BD 九年级数学学科导学案编者:新河中学 第15 周第2课时 课题:5.2圆的对称性(2) 课型:新课 一、学习目标:1圆的对称性及垂径定理,运用垂径定理进行有关的计算和证明.2经历探索圆的对称性及其相关性质的过程进一步体会理解研究几何图形的各种方法.二、知识准备:如上图, BC、BD是O的两条弦, (1)如果COBBOD,那么_, _(2)如果BCBD那么_,_;注:圆心角相等 弧 弦相等(在同圆或等圆中)三、知识梳理:1圆的轴对称性及有关性质.2理解垂径定理并运用其解决有关问题. 四、达标测试 : 1. 如图,在O中,CD是直径,AB是弦,CDAB,垂足为M则有AM=_, _= , _= T1 T2 T3 T42过O内一点P作一条弦AB,使P为AB的中点.3.O中,直径AB 弦CD于点P ,AB=10cm,CD=8cm,则OP的长为 CM.4. 如图,已知在O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求O的半径5. O的弦AB为5cm,所对的圆心角为120,则圆心O到这条弦AB的距离为_ 6. 圆内一弦与直径相交成30且分直径为1cm和5cm,则圆心到这条弦的距离为 CM7在半径为5的圆中,弦ABCD,AB=6,CD=8,试求AB和CD的距离.8. 一跨河桥,桥拱是圆弧形,跨度(AB)为16米,拱高(CD)为4米,求:桥拱半径若大雨过后,桥下河面宽度(EF)为12米,求水面涨高了多少?ABEFMCDO9(1)“圆材埋壁”是我国古代著名数学家著作九章算术中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质是解决下面的问题:“如上图,CD为O的直径,弦ABCD于点E,CE=1,AB=10,求CD的长”根据题意可得CD的长为_(2)工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是12毫米,测得钢珠顶端离零件表面的距离为9毫米,如图所示,则这个小孔的直径AB是 毫米(T9中两题可任做其一)初三数学学科导学案编者:新河中学 第 周 第 课时课题(内容): 5.3 圆周角(1) 课型:新授课一、学习目标:1、经历探索圆周角的有关性质的过程2、知道圆周角定义,掌握圆周角定理,会用定理进行推证和计算。3、体会分类、转化等数学思想二、知识准备:1、如图,点A在O外,点B1 、B2、B在O上,点C在O内,度量A、B1 、B2、B、C的大小,你能发现什么?B1 、B2、B有什么共同的特征?2、归纳得出结论,顶点在_,并且两边_的角叫做圆周角。强调条件:_,_。三、知识梳理:1探索圆周角的有关性质2理解圆周角定义,掌握圆周角定理。四、达标测试 :1、如图1,已知BOC=100o, BAC=( )A 100O B 130O C 50O D 80O2、如图2,ABC的顶点都在O上,若BOC=120o,则BAC=( )A 60O B 90O C 120O D 150O 3、如图3。AB、AC是O的弦,延长CA到点D,使AD=AB,若D=20O,则BAC=( )A 60O B 40O C 80O D 120O 4、如图4,AB是圆O的直径,BAC= 32O,D为AC的中点,DAC= 。图1 图2 图3 图45、已知、如图ABC的顶点都在O上,点P在O上,且APC=CPB=60O,求证:ABC是等边三角形。6、如图,四边形ABCD的顶点都在O上,点E在DA的延长上,且C的度数为500,求BAE的度数。(提示:连结OB、OD)7、如图,OA、OB、OC都是O的半径,A0B=2BOC,求证:ACB=2BAC。初三数学学科导学案编者:新河中学 第 周 第 课时课题(内容): 5.3 圆周角(2) 课型:新授课一、学习目标:1、熟练应用圆周角定理及其推论解决有关的计算和证明的问题2、在应用圆周角定理及其推论进行有关的计算和证明的过程中,进一步培养观察、分析和解决问题的能力二、知识准备:我们学习过哪些与圆有关的角?它们之间有什么关系?问题1如图,BC为O的直径,它所对的圆周角是锐角、钝角,还是直角?为什么?三、知识梳理:直径(或半圆)所对的圆周角是 。90的圆周角所对的弦是 。四、达标测试:1、在O中,圆心角AOB等于560,弦AB所对的圆周角等于( ) A 28 0 B 112 0 C 280或1520 D 1240或5602、在RTABC中,C=900,以AC为直径的O与斜边AB相交于点D,若AC=4cm,BC=3cm,则CD= cm,O点到AB的距离为 cm.3、如图,等边三角形ABC的顶点都在O上,BD是直径,则BDC= 0, ACD 0,若CD=6cm,则ABC的面积等于 cm2.4、如图,OA是O的半径,以OA为直径的C与O的弦AB相交于点D,求证:点D是AB的中点。5、如图,AB,AC分别是O的直径和弦,BAC=300,ODAB,与AC相交于点D,OD=5cm,求弦AC的长。6、已知,如图AD是ABC的边BC上的高,以AD为直径作圆,与AB,AC分别相交于点E,F求证:AEAB=AFAC。初三数学学科导学案编者:新河中学 第 周 第 课时课题(内容): 5.4确定圆的条件 课型:新授课一、学习目标:1经历不在同一条直线上的三个点确定一个圆的探索过程,培养学生的探索能力2了解不在同一条直线上的三点确定一个圆,了解三角形的外接圆、三角形的外心、圆的内接三角形的概念,会过不在同一条直线上的三点作圆.进一步体会解决数学问题的策略二、知识准备: (1)线段垂直平分线的性质是: , (2). 作圆的关键是: 三、知识梳理:1、_三点确定一个圆。2、相关概念:_叫做三角形的外接圆._叫做三角形的外心._叫做内接三角形.四、达标测试:1 、 经过一点作圆可以作 个圆;经过两点作圆可以作 个圆,这些圆的圆心在这两点的 上;经过 的三点可以作 个圆,并且只能作 个圆。2、 三角形的外心是三角形的 的圆心,它是三角形的 的交点,它到 的距离相等。 3、 RtABC中,C=900,AC=6cm,BC=8cm,则其外接圆的半径为 。4、等边三角形的边长为a,则其外接圆的半径为 .5、已知AB=7cm,则过点A,B,且半径为3cm的圆有( )A 0个 B 1个 C 2个 D 无数个6、 如图,平原上有三个村庄A,B,C,现计划打一水井P,使水井到三个村庄的距离相等。在图中画出水井P的位置。A。B。C7、活动与探究:如下图,CD所在的直线垂直平分线段AB怎样使用这样的工具找到圆形工件的圆心?初三数学学科导学案编者:新河中学 第 周 第 课时课题(内容):5.5直线与圆的位置关系(1) 课型:新授课一、学习目标(1)经历探索直线与圆的位置关系的过程,感受类比、转化、数形结合等数学思想,学会数学地思考问题(2)理解直线和圆的三种位置关系相交,相离,相切。(3)会正确判断直线和圆的位置关系。(重、难点)二、知识准备(3分钟)1、复习点与圆的位置关系,回答问题:如果设O的半径为r,点P到圆心的距离为d,请你用d与r之间的数量关系表示点P与O的位置关系。2、欣赏海上日出图片,谈谈你的感受.三、知识梳理(2分钟)1、直线与圆有种位置关系,分别是 、 、 。2、若O半径为r, O到直线l的距离为d,则d与r的数量关系和直线与圆的位置关系:直线与圆 d r直线与圆 d r 直线与圆 d r四、达标检测: 达标检测一1、课本P129T1、2(5分钟)2、在ABC中,AB5cm,BC=4cm,AC=3cm,(1)若以C为圆心,2cm长为半径画C,则直线AB与C的位置关系如何?(2)若直线AB与半径为r的C相切,求r的值。(3)若直线AB与半径为r的C相交,试求r的取值范围。(选做)(5分钟)达标检测二(15分钟)1 圆O的直径4,圆心O到直线L的距离为3,则直线L与圆O的位置关系是( ) (A)相离 (B)相切 (C)相交 (D)相切或相交2直线上的一点到圆心O的距离等于O的半径,则直线与O的位置关系是( )(A) 相切 (B) 相交 (C)相离 (D)相切或相交3直角三角形ABC中,C=900,AB=10,AC=6,以C为圆心作圆C,与AB相切,则圆C的半径为()()()().6 (D)4.84在直角三角形中,角,厘米,厘米,以为圆心,为r半径作圆,当()r厘米,圆与位置关系是 当(2)r4.8厘米,圆与位置关系是 当(3)r厘米,圆与位置关系是 5已知圆的直径是厘米,点到直线的距离为d.(1) 若与圆相切,则d _厘米(2) 若d 厘米,则与圆的位置关系是_(3) 若d 厘米,则与圆有_个公共点.6已知圆的半径为r,点到直线的距离为厘米。(1) 若r大于厘米,则与圆的位置关系是_(2) 若r等于厘米,与圆有_个公共点(3) 若圆与相切,则r_厘米7已知RtABC的斜边AB6cm,直角边AC3cm,以点C为圆心,半径分别为2cm和4cm画两圆,这两个圆与AB有怎样的位置关系?当半径多长时,AB与C相切?8(选做)如图,AOB=30,点M在OB上,且OM=5cm,以M为圆心,r为半径画圆,试讨论r的大小与所画M和射线OA的公共点个数之间的对应关系。初三数学学科导学案编者:新河中学 第 周 第 课时课题(内容):5.5直线与圆的位置关系(2) 课型:新授课一、学习目标1. 了解切线的概念,探索切线与过切点的半径之间的关系2. 能判定一条直线是否为圆的切线(重、难点)3. 会过圆上一点画圆的切线二、知识准备(3分钟)复习直线和圆的位置关系,回忆相关内容:1、直线和圆的位置关系有哪些?它们所对应的数量关系又是怎样的?2、判断直线和圆的位置关系有哪些方法?特别地,判断直线与圆相切有哪些方法?四、知识梳理(2分钟)1、判断直线与圆相切有哪些方法? 2、直线与圆相切有哪些性质? 3、在已知切线时,常作什么样的辅助线? 五、达标检测一1、课本P131T1、2 P136T8(5分钟)2、(选做)如图AB为O的弦,BD切O于点B,ODOA,与AB相交于点C,求证:BDCD。(5分钟)达标检测二(15分钟)1、如图,AB为O的直径,BC为O的切线,AC交O于点D。图中互余的角有( )A 1对 B 2对 C 3对 D 4对 2如图,PA切O于点A,弦ABOP,弦垂足为M,AB=4,OM=1,则PA的长为( )A B C D 3、 已知:如图,直O线BC切于点C,PD是O的直径A=28,B=26,PDC= 4、 如图,AB是O的直径,MN切O于点C,且BCM=38,求ABC的度数。 5、(09泸州)如图在ABC中AB=BC,以AB为直径的O与AC交于点D,过D作DFBC,交AB的延长线于E,垂足为F求证:直线DE是O的切线6(选做题,任做其一)如图,AB,CD,是两条互相垂直的公路,ACP=45,设计师想在拐弯处用一段圆弧形弯道把它们连接起来(圆弧在A,C两点处分别与道路相切),你能在图中画出圆弧形弯道的示意图吗?已知:ABC内接于O,过点A作直线EF。(1)如图AB是直线,要使EF是O的切线,还要添加的条件是 或 或 ;(2)如图,AB为非直径的弦CAE=B,求证: EF是O的切线。图 图九年级数学学科导学案编者:新河中学 第 周 第 课时课题(内容):5.5直线与圆的位置关系(3) 课型:新授课一、学习目标1了解三角形的内切圆、三角形的内心等概念。2会已知作三角形的内切圆(重点)3 通过探究作三角形的内切圆的过程,归纳内心的性质,进一步提高归纳能力与作图能力。二、知识准备1、复习直线和圆的位置关系,回忆相关内容(2分钟):直线和圆的位置关系有哪些?它们所对应的数量关系又是怎样的?判断直线与圆相切有哪些方法?2、复习角平分线的性质和判定定理(1分钟)三、知识梳理(2分钟)1、与三角形各边都 的圆叫三角形的内切圆;内切圆的圆心叫;这个三角形叫做。2、内心的性质: 3、如何ABC的内切圆? 四、达标检测一: 1、课本P133T1、2 (5分钟)2、(选做)从三角形木板裁下一块圆形的木板,怎样才能使圆的面积尽可能大?(5分钟)达标检测二:(15分钟)1 下列说法中,正确的是( )。 A垂直于半径的直线一定是这个圆的切线 B 圆有且只有一个外切三角形C三角形有且只有一个内切圆, D三角形的内心到三角形的3个顶点的距离相等2 如图,PA,PB,分别切O于点A,B,P=70,C等于 。3 已知点I为ABC的内心,且ABC=50,ACB=60,BIC= 。 4 在ABC中,A=50(1)若点O是ABC的外心,则BOC= . (2) 若点O是ABC的内心,则BOC= .5 已知:如图,ABC 求作:ABC的内切圆。 作法: 6 已知:如图,O与ABC各边分别切于点D,E,F,且C=60,EOF=100,求B的度数。 7 (选做题,任做其一)求证:等边三角形的外接圆半径R是内切圆半径r的2倍。 )如图,点I是ABC的内心,线段AI的延长线交ABC的外接圆于点D,交BC边于点E.ID与BD相等吗?为什么? 设ABC的外接圆的半径为5, ID=6,AD=x,DE=y,当点A在优弧BC上运动时,求y与x的函数关系式,并指明自变量x的取值范围.九年级数学学科导学案编者: 新河中学 第15周 第4课时课题: 直线与圆的位置关系(4) 课型:新课一、学习目标1认识过圆外一点可画出圆的两条切线,能过圆外一点画圆的切线。2认识切线长以及与切线长有关的性质与应用。3进一步发展推理能力,会用有条理的语言表述自己的观点。二、知识准备1复习切线的性质与判定。2. 复习垂径定理及等腰三角形三线合一定理。3. 明确直径所对的圆周角是直角。三、知识梳理1切线长定义2切线长定理及其应用(提醒学生注意由切线长可得到一个等腰三角形这一点和圆心的连线不但平分两切线的夹角,还垂直平分两切点间的线段)四、达标检测达标测试一 1、如图,PA、PB分别切圆O于A、B两点,C为劣弧AB上一点,APB=30,则ACB=( )A、60 B、75 C、105 D、1202、从圆外一点向半径为9的圆作切线,已知切线长为18,从这点到圆的最短距离为( )A、9 B、9(-1) C、9(-1) D、93、如图,PA、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知PA=7cm,则PCD的周长等于_4、如图,圆O内切RtABC,切点分别是D、E、F,则四边形OECF是_达标测试二1 课本135练习2、如图,ABDC,直线AB、BC、CD分别与O相切于点E、F、G求的度数。3、如图所示,EB、EC是O的两条切线,B、C是切点,A、D是O上两点,如果E=46,DCF=32,求A的度数4、如图所示,已知在ABC中,B=90,O是AB上一点,以O为圆心OB为半径的圆与AB交于点E,与AC切于点D(1)求证:DEOC;(2)若AD=2,DC=3,且AD2=AEAB,求的值九年级数学学科导学案编者:新河中学 第16 周第1课时 课题:5.6圆与圆的位置关系 课型:新课 一、学习目标:1、 了解圆与圆之间的5种位置关系.2、 经历探索两圆的位置关系与两圆半径、圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论