




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
等比数列的前项和(第一课时)(一)教材:人民教育出版社全日制普通高级中学教科书(必修)数学第一册(上)一、教材分析从教材的编写顺序上来看,等比数列的前n项和是第三章“数列”第五节的内容,一方面它是“等差数列的前n项和”与“等比数列”内容的延续、与前面学习的函数等知识也有着密切的联系,另一方面它又为进一步学习“数列的极限”等内容作准备.就知识的应用价值上来看,它是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的数学思想方法如分类讨论等在各种数列求和问题中有着广泛的应用;另外它在如“分期付款”等实际问题的计算中也经常涉及到.就内容的人文价值上来看,等比数列的前n项和公式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体教师教学用书安排“等比数列的前n项和”这部分内容授课时间2课时,本节课作为第一课时,重在研究等比数列的前n项和公式的推导及简单应用,教学中注重公式的形成推导过程并充分揭示公式的结构特征和内在联系.二、教学目标依据课程标准,结合学生的认知水平和年龄特点,确定本节课的教学目标如下:知识与技能目标:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题过程与方法目标:通过公式的推导过程,提高学生的建模意识及探究问题、分析与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质情感与态度目标:通过经历对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美三、教学重点和难点重点:等比数列的前项和公式的推导及其简单应用从教材体系来看,它为后继学习提供了知识基础,具有承上启下的作用;从知识特点而言,蕴涵丰富的思想方法;就能力培养来看,通过公式推导教学可培养学生的运用数学语言交流表达的能力.突出重点方法:“抓三线、突重点”,即(一)知识技能线:问题情境公式推导公式运用;(二)过程与方法线:特殊到一般、猜想归纳 错位相减法等转化、方程思想;(三)能力线:观察能力数学思想解决问题能力灵活运用能力及严谨态度.难点:等比数列的前项和公式的推导从学生认知水平来看,学生的探究能力和用数学语言交流的能力还有待提高.从知识本身特点来看,等比数列前n项和公式的推导方法和等差数列的的前n项和公式的推导方法可比性低,无法用类比的方法进行,它需要对等比数列的概念和性质能充分理解并融会贯通,而知识的整合对学生来说恰又是比较困难的,而且错位相减法是第一次碰到,对学生来说是个新鲜事物.突破难点手段:“抓两点,破难点”,即一抓学生情感和思维的兴奋点,激发他们的兴趣,鼓励学生大胆猜想、积极探索,及时地给以鼓励,使他们知难而进;二抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给予适当的提示和指导.四、教学方法利用计算机和实物投影等辅助教学,采用启发和探究-建构教学相结合的教学模式.五、教学过程教 学 过 程设计意图创设情境【漫画演示】话说猪八戒自西天取经回到了高老庄,从高员外手里接下了高老庄集团,摇身变成了CEO可好景不长,便因资金周转不灵而陷入了窘境,急需大量资金投入,于是就找孙悟空帮忙悟空一口答应:“行!我每天投资100万元,连续一个月(30天),但是有一个条件是:作为回报,从投资的第一天起你必须返还给我1元,第二天返还2元,第三天返还4元即后一天返还数为前一天的2倍”八戒听了,心里打起了小算盘:“第一天:支出1元,收入100万;第二天:支出2元,收入100万,第三天:支出4元,收入100万元;哇,发财了” 心里越想越美再看看悟空的表情,心里又嘀咕了:“这猴子老是欺负我,会不会又在耍我?”【教师提问】(1)假如你是高老庄集团企划部的高参,请你帮八戒分析一下,按照悟空的投资方式,30天后,八戒能吸纳多少投资?又该返还给悟空多少钱?(2)(观察数字特征,引出课题)依托市场经济背景,运用学生熟悉的人物编拟故事,以趣引思,激发学生学习热情.探究问题1.学生自主探究:2.解决情境问题3.师生共同探讨一般等比数列前n项和:即方法1:错位相减法方法2:提取公比q方法3:利用等比定理 领悟数学应用价值从特殊到一般,从模仿到创新,有利于学生的知识迁移和能力提高通过学生个别学习,互相讨论,揭示知识的内在联系. 通过生生、师生间的探讨、合作,培养学生的洞察力增强学生思维的严谨性.通过实物展示学生解决问题的方法,破除思维定势.辨析质疑1口答:在公比为q的等比数列中(1)若,则_(2)若,则_2判断是非: ( ) ( )若且,则 ( )3对公式的再认识(1)、对公比q的分类讨论(2)、公式中n的理解 剖析公式中的基本量及结构特征,识记公式.巩固提高例1已知是等比数列,请完成下表:题号(1)(2)(3) 例2求等比数列的第5项到第10项的和方法1: 观察、发现:方法2: 此等比数列的连续项从第5项到第10项构成一个新的等比数列:首项为,公比为,项数为变式1:求的前n项和变式2:求的前n项和(留作思考)熟练公式运用,着重强调公式的选择.本例由书中的例题改编而成,一题多解及变式,有利于提高思维的灵活性和梯度.反思拓广(一)小结引导学生从知识、思想、方法三个方面进行总结(二)思考“神舟六号”发射成功,某移动公司立即发出短信:“请你把中国神六发射成功的消息转发给10位朋友,并且注明您是第x位接收此消息的”假定这家公司发出的10条短信中的x值均为1,以后每一位收到短信后将x值都增加1,再将短信发出据统计,所发短信中x的最大值为10试问通过这家公司最多发了多少条短信?从知识的归纳进一步延伸到思想方法提炼,把数学的学习作为提高学生数学素养和文化水平的有效途径.作业布置(1)书面作业: 必做题:课本P129 练习3(1) 习题3.5 1选做题:画一个边长为2cm的正方形, 再将这个正方形各边的中点相连得到第2个正方形,依此类推,这样一共画了10个正方形, 求这10个正方形的面积的和(2)研究性作业:查阅“芝诺悖论”,并从数列求和的角度加以解释(参考网站:/lygdj/ztwz/shuxue /x2/042.htm)布置弹性作业以使各个层次的学生都有所发展.提供参考网站,便于学生开展自主学习.六、教学设计说明1情境设置生活化.本着新课程的教学理念,考虑到高一学生的心理特点以及初、高中教学的衔接,让学生学生初步了解“数学来源于生活”, 采用动漫故事的形式创设问题情景,意在营造和谐、积极的学习气氛,激发学生的探究欲.2问题探究活动化教学中本着以学生发展为本的理念,充分给学生想的时间、说的机会以及展示思维过程的舞台,通过他们自主学习、合作探究,展示学生解决问题的思想方法,共享学习成果,体验数学学习成功的喜悦.通过师生之间不断合作和交流,发展学生的数学观察能力和语言表达能力,培养学生思维的发散性和严谨性.3辨析质疑结构化 在理解公式的基础上,及时进行正反两方面的“短、平、快”填空和判断是非练习.通过总结、辨析和反思,强化了公式的结构特征,促进学生主动建构,有助于学生形成知识模块,优化知识体系.4巩固提高梯度化例1采用表格形式,突出表现五个基本量“知三求二”的关系,通过公式的正用和逆用进一步提高学生运用知识的能力;例2由教科书中的例题改编而成,并进行适当的变式,可以提高学生的模式识别的能力,培养学生思维的深刻性和灵活性.5思路拓广数学化从整理知识提升到强化方法,由课内巩固延伸到课外思考,变“知识本位”为“学生本位”,使数学学习成为提高学生素质的有效途径.以生活中的实例作为思考,让学生认识到数学来源于生活并应用于生活,生活中处处有数学6作业布置弹性化通过布置弹性作业,为学有余力的学生提供进一步发展的空间介绍相关网站让学生查阅有关资料,有利于丰富学生的知识,拓展学生的视野,提高学生的数学素养等比数列的前项和(第一课时)(二)教材:人民教育出版社全日制普通高级中学教科书(必修)数学第一册(上)一、教材分析从教材的编写顺序上来看,等比数列的前n项和是第三章“数列”第五节的内容,一方面它是“等差数列的前n项和”与“等比数列”内容的延续、与前面学习的函数等知识也有着密切的联系,另一方面它又为进一步学习“数列的极限”等内容作准备.就知识的应用价值上来看,它是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的数学思想方法如分类讨论等在各种数列求和问题中有着广泛的应用;另外它在如“分期付款”等实际问题的计算中也经常涉及到.就内容的人文价值上来看,等比数列的前n项和公式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体教师教学用书安排“等比数列的前n项和”这部分内容授课时间2课时,本节课作为第一课时,重在研究等比数列的前n项和公式的推导及简单应用,教学中注重公式的形成推导过程并充分揭示公式的结构特征和内在联系.二、教学目标依据课程标准,结合学生的认知水平和年龄特点,确定本节课的教学目标如下:知识与技能目标:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题过程与方法目标:通过公式的推导过程,提高学生的建模意识及探究问题、分析与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质情感与态度目标:通过经历对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美三、教学重点和难点重点:等比数列的前项和公式的推导及其简单应用从教材体系来看,它为后继学习提供了知识基础,具有承上启下的作用;从知识特点而言,蕴涵丰富的思想方法;就能力培养来看,通过公式推导教学可培养学生的运用数学语言交流表达的能力.突出重点方法:“抓三线、突重点”,即(一)知识技能线:问题情境公式推导公式运用;(二)过程与方法线:特殊到一般、猜想归纳 错位相减法等转化、方程思想;(三)能力线:观察能力数学思想解决问题能力灵活运用能力及严谨态度.难点:等比数列的前项和公式的推导从学生认知水平来看,学生的探究能力和用数学语言交流的能力还有待提高.从知识本身特点来看,等比数列前n项和公式的推导方法和等差数列的的前n项和公式的推导方法可比性低,无法用类比的方法进行,它需要对等比数列的概念和性质能充分理解并融会贯通,而知识的整合对学生来说恰又是比较困难的,而且错位相减法是第一次碰到,对学生来说是个新鲜事物.突破难点手段:“抓两点,破难点”,即一抓学生情感和思维的兴奋点,激发他们的兴趣,鼓励学生大胆猜想、积极探索,及时地给以鼓励,使他们知难而进;二抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给予适当的提示和指导.四、教学方法利用计算机和实物投影等辅助教学,采用启发和探究-建构教学相结合的教学模式.五、教学过程教 学 过 程设计意图创设情境【漫画演示】话说猪八戒自西天取经回到了高老庄,从高员外手里接下了高老庄集团,摇身变成了CEO可好景不长,便因资金周转不灵而陷入了窘境,急需大量资金投入,于是就找孙悟空帮忙悟空一口答应:“行!我每天投资100万元,连续一个月(30天),但是有一个条件是:作为回报,从投资的第一天起你必须返还给我1元,第二天返还2元,第三天返还4元即后一天返还数为前一天的2倍”八戒听了,心里打起了小算盘:“第一天:支出1元,收入100万;第二天:支出2元,收入100万,第三天:支出4元,收入100万元;哇,发财了” 心里越想越美再看看悟空的表情,心里又嘀咕了:“这猴子老是欺负我,会不会又在耍我?”【教师提问】(1)假如你是高老庄集团企划部的高参,请你帮八戒分析一下,按照悟空的投资方式,30天后,八戒能吸纳多少投资?又该返还给悟空多少钱?(2)(观察数字特征,引出课题)依托市场经济背景,运用学生熟悉的人物编拟故事,以趣引思,激发学生学习热情.探究问题1.学生自主探究:2.解决情境问题3.师生共同探讨一般等比数列前n项和:即方法1:错位相减法方法2:提取公比q方法3:利用等比定理 领悟数学应用价值从特殊到一般,从模仿到创新,有利于学生的知识迁移和能力提高通过学生个别学习,互相讨论,揭示知识的内在联系. 通过生生、师生间的探讨、合作,培养学生的洞察力增强学生思维的严谨性.通过实物展示学生解决问题的方法,破除思维定势.辨析质疑1口答:在公比为q的等比数列中(1)若,则_(2)若,则_2判断是非: ( ) ( )若且,则 ( )3对公式的再认识(1)、对公比q的分类讨论(2)、公式中n的理解 剖析公式中的基本量及结构特征,识记公式.巩固提高例1已知是等比数列,请完成下表:题号(1)(2)(3) 例2求等比数列的第5项到第10项的和方法1: 观察、发现:方法2: 此等比数列的连续项从第5项到第10项构成一个新的等比数列:首项为,公比为,项数为变式1:求的前n项和变式2:求的前n项和(留作思考)熟练公式运用,着重强调公式的选择.本例由书中的例题改编而成,一题多解及变式,有利于提高思维的灵活性和梯度.反思拓广(一)小结引导学生从知识、思想、方法三个方面进行总结(二)思考“神舟六号”发射成功,某移动公司立即发出短信:“请你把中国神六发射成功的消息转发给10位朋友,并且注明您是第x位接收此消息的”假定这家公司发出的10条短信中的x值均为1,以后每一位收到短信后将x值都增加1,再将短信发出据统计,所发短信中x的最大值为10试问通过这家公司最多发了多少条短信?从知识的归纳进一步延伸到思想方法提炼,把数学的学习作为提高学生数学素养和文化水平的有效途径.作业布置(1)书面作业: 必做题:课本P129 练习3(1) 习题3.5 1选做题:画一个边长为2cm的正方形, 再将这个正方形各边的中点相连得到第2个正方形,依此类推,这样一共画了10个正方形, 求这10个正方形的面积的和(2)研究性作业:查阅“芝诺悖论”,并从数列求和的角度加以解释(参考网站:/lygdj/ztwz/shuxue /x2/042.htm)布置弹性作业以使各个层次的学生都有所发展.提供参考网站,便于学生开展自主学习.六、教学设计说明1情境设置生活化.本着新课程的教学理念,考虑到高一学生的心理特点以及初、高中教学的衔接,让学生学生初步了解“数学来源于生活”, 采用动漫故事的形式创设问题情景,意在营造和谐、积极的学习气氛,激发学生的探究欲.2问题探究活动化教学中本着以学生发展为本的理念,充分给学生想的时间、说的机会以及展示思维过程的舞台,通过他们自主学习、合作探究,展示学生解决问题的思想方法,共享学习成果,体验数学学习成功的喜悦.通过师生之间不断合作和交流,发展学生的数学观察能力和语言表达能力,培养学生思维的发散性和严谨性.3辨析质疑结构化 在理解公式的基础上,及时进行正反两方面的“短、平、快”填空和判断是非练习.通过总结、辨析和反思,强化了公式的结构特征,促进学生主动建构,有助于学生形成知识模块,优化知识体系.4巩固提高梯度化例1采用表格形式,突出表现五个基本量“知三求二”的关系,通过公式的正用和逆用进一步提高学生运用知识的能力;例2由教科书中的例题改编而成,并进行适当的变式,可以提高学生的模式识别的能力,培养学生思维的深刻性和灵活性.5思路拓广数学化从整理知识提升到强化方法,由课内巩固延伸到课外思考,变“知识本位”为“学生本位”,使数学学习成为提高学生素质的有效途径.以生活中的实例作为思考,让学生认识到数学来源于生活并应用于生活,生活中处处有数学6作业布置弹性化通过布置弹性作业,为学有余力的学生提供进一步发展的空间介绍相关网站让学生查阅有关资料,有利于丰富学生的知识,拓展学生的视野,提高学生的数学素养说课题目:等比数列的前n项和(第一课时)(三)(选自人教版高中数学第一册(上)第三章第五节)一、教材分析1.从在教材中的地位与作用来看等比数列的前n项和是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养2.从学生认知角度看从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错3. 学情分析教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨4. 重点、难点教学重点:公式的推导、公式的特点和公式的运用教学难点:公式的推导方法和公式的灵活运用公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点二、目标分析知识与技能目标:理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题过程与方法目标:通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力情感与态度价值观:通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点三、过程分析学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:1.创设情境,提出问题在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格国王令宫廷数学家计算,结果出来后,国王大吃一惊为什么呢?设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性故事内容紧扣本节课的主题与重点此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数 带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和这时我对他们的这种思路给予肯定设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔.2.师生互动,探究问题在肯定他们的思路后,我接着问:1,2,22,263是什么数列?有何特征? 应归结为什么数学问题呢?探讨1: ,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)探讨2: 如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有 ,记为(2)式比较(1)(2)两式,你有什么发现?设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到: 老师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心3.类比联想,解决问题这时我再顺势引导学生将结论一般化, 这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础)再次追问:结合等比数列的通项公式an=a1qn-1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式)设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用4.讨论交流,延伸拓展在此基础上,我提出:探究等比数列前n项和公式,还有其它方法吗?我们知道, 那么我们能否利用这个关系而求出sn呢?根据等比数列的定义又有,能否联想到等比定理从而求出sn呢?设计意图:以疑导思,激发学生的探索欲望,营造一个让学生主动观察、思考、讨论的氛围. 以上两种方法都可以化归到, 这其实就是关于的一个递推式,递推数列有非常重要的研究价值,是研究性学习和课外拓展的极佳资源,它源于课本,又高于课本,对学生的思维发展
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年电商平台售后服务质量提升对售后服务评价体系的影响报告
- 2023年度冶金工业技能鉴定模拟试题及参考答案详解一套
- 住宅楼基础及地下室施工方案筏板基础剪力墙
- 市场调研公司合伙协议书模板
- 岩石爆破破坏机理课件
- 屋顶上的猫咪课件
- 小麦的秘密课件教学
- 小鸭子与小公鸡的课件
- 小鸭嘟嘟和向日葵课件
- 汽车美容店租赁合同范本(含品牌形象维护及更新)
- 《基本医疗保险门诊特殊慢性病药品目录(2023 年)》
- 餐饮外卖平台食品安全管理制度
- 2024年山东省(枣庄、菏泽、临沂、聊城)中考语文试题含解析
- 云南省大理州州级机关统一遴选公务员真题
- 一建机电实务压力试验总结
- 现代农业课件教学课件
- 房地产 图集-复合配筋先张法预应力混凝土管桩(2018浙G36)
- 辽宁省大连市甘井子区2024-2025学年上学期七年级 月考英语试卷(10月份)
- 2024年图形化编程竞赛选拔试题
- 2020教科版三年级科学上册全册教案
- 2025届宁夏银川十五中七年级数学第一学期期末综合测试模拟试题含解析
评论
0/150
提交评论