基于ProE的弧齿锥齿轮三维造型.doc_第1页
基于ProE的弧齿锥齿轮三维造型.doc_第2页
基于ProE的弧齿锥齿轮三维造型.doc_第3页
基于ProE的弧齿锥齿轮三维造型.doc_第4页
基于ProE的弧齿锥齿轮三维造型.doc_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ee基于PRO/E的弧齿锥齿轮三维造型ee(ee)指导教师:ee摘要弧齿锥齿轮具有传动平稳,承载能力强等优点,有着非常广泛的应用前景。本论文以三维软件PRO/E为平台,现在PRO/E环境下弧齿锥齿轮的造型,深入研究螺旋锥齿轮的分类,在建立渐开线的数学模型的基础上,明确弧齿锥齿轮的几何参数的相互关系,完成弧齿锥齿轮造型。为进一步的工程应用奠定了基础,实现弧齿锥齿轮三维造型。关键词弧齿锥齿轮;三维造型;PRO/E Three-dimensional modeling of spiral bevel gears based on Pro/Eee(ee)Tutor: eeAbstract:Gleason spiral bevel gear is widely used in the transmission systems of mechanical, with much advantage, such as its high stability and bearing loads. Further study the classification of spiral bevel gears and the establishment of the involute based on mathematical model, clear arc tooth wimble gear geometry parameters of the mutual relation, complete arc tooth wimble gear modeling. Based on the software PRO/E, and then realizes 3-D modeling of Gleason spiral bevel gear.Key words: Gleason spiral bevel gear; 3 d modeling; PRO/E ee目 录1. 绪论11.1 课题背景11.1.1. 课题的来源11.1.2. 课题的研究背景11.1.3. 特征建模理论及其齿轮CAD系统的发展概况21.2 本课题的意义和研究内容及方法31.2.1. 课题研究的意义31.2.2. 课题研究的内容41.2.3. 课题的可行性分析42. PRO/E开发方法的研究52.1 PRO/E软件概述52.1.1. PRO/E软件的技术特点52.1.2. PRO/E主要功能模块63. 直齿圆柱齿轮、斜齿圆柱齿轮及直齿锥齿轮的数学模型的建立83.1 齿轮常用的齿形曲线渐开线83.1.1. 渐开线的形成及其特性83.1.2. 渐开线数学模型103.1.3. 渐开线齿廓的绘制123.2 直齿圆柱齿轮的三维造型133.2.1. 数学模型133.2.2. 建模设计流程143.3 斜齿圆柱齿轮的三维造型153.3.1. 斜齿圆柱齿轮的数学模型153.3.2. 建模设计流程164. 弧齿锥齿轮三维造型184.1 螺旋锥齿轮的分类184.2 弧齿锥齿轮数学模型195. 弧齿锥齿轮运动仿真495.1 建立运动模型495.2 定义分析并获取分析结果51致谢53参考文献54361. 绪论1.1 课题背景1.1.1. 课题的来源本课题弧齿锥齿轮三维造型几何形状非常复杂,其设计和制造技术从问世以来一直是制造业的难点和热点。弧齿锥齿轮在航空传动中是在高速、重载的条件下工作,所以其三维造型的质量要求很高,加之十分复杂的齿面几何外形,弧齿锥齿轮的三维造型成为一个既重要又困难的课题。课题弧齿锥齿轮的造型是这参数化项目的前期工作,为后期的仿真、分析等研究工作奠定基础。本文旨在针对圆柱齿轮以及弧齿锥齿轮三维建模,利用三维软件PRO/E实现齿轮的造型,以提高建模效率,并为其后继的设计分析和制造工作莫定基础。1.1.2. 课题的研究背景现代工业生产系统中普遍使用齿轮装置。齿轮传动是机械传动的重要装置,具有质量小、体积小、传动比大和效率高等优点,已广泛地应用于汽车、船舶、机床、矿山冶金等领域,它几乎适用于一切功率和转速范围。目前齿轮传动技术已成为世界各国机械传动发展的重点之一。在传统的锥齿轮应用中,普遍使用直齿锥齿轮,特别是在相交轴的传动中,直齿锥齿轮比螺旋锥齿轮易于加工,在传动中得到相当广泛的应用。但为了解决直齿锥齿轮传动不平稳,承载能力低,噪音大这一问题,美国格.里森公司的科学家E.威尔德哈泊、M.L.巴斯特尔等人提出了圆弧齿锥齿轮。圆弧齿锥齿轮可以看作是把直齿锥齿轮切成无数薄片后旋转而成的,旋转后增加了轮齿啮合的重叠系数,螺旋锥齿轮比直齿锥齿轮运转平稳,而且承载能力高,高速运转的噪音和振动显著减小,因而汽车、船舶、航空、航海、拖拉机和各种精密机床等行业中所使用的直齿锥齿轮已逐渐被螺旋锥齿轮副替代。齿轮设计在齿轮制造应用过程中占有重要地位。传统的齿轮设计过程繁冗,效率低,同样的问题也出现在弧齿锥齿轮的设计面前。采用传统的设计方法设计一组较为合理的齿轮副要反复修正参数、多次校核计算,花费很长时间才能实现。但齿轮类零件大部分具有相似的结构和形状,在新产品的设计和图纸绘制过程中,不可避免地要多次反复修改,进行零件形状、尺寸的综合协调和优化。这时寻求一种简便、合理的设计方法,提高设计工作效率,是齿轮设计工作者的迫切愿望。因此,借助CAD技术实现其绘图过程的参数化和自动化,对于提高设计效率和保证设计质量具有重要意义。1.1.3. 特征建模理论及其齿轮CAD系统的发展概况1. 特征建模理论的发展概况建模技术是CAD的核心技术,特征造型技术是新一代继承化CAD系统应用研究的热点理论,也是弧齿锥齿轮造型的基础理论依据,对齿轮建模和系统设计起着指导性作用。另外,研究国内外齿轮CAD设计的发展状况,可以借鉴前人的研究成果,对弧齿锥齿轮的研究有一定的指导意义。特征是80年代中后期为了表达产品的完整信息而提出的一个概念,它是对诸如零件形状、工艺和功能等与零件描述相关的信息集的综合描述,是反映零件特点的可按一定的规则分类的产品描述信息。这表明:特征不是体素;不是某个或几个加工表面;不是完整的零件。对于制造特征,其分类与其加工工艺规程密切相关,用不同的加工方法加工实现的表面或零件,要定义成不同的特征。描述特征的信息中,除表达形状的几何信息及约束关系信息外,还包括材料、精度等制造信息,通过定义简单的特征还可以生成组合特征。特征建模是新一代智能化、集成化CAD系统的核心内容,也是当前CAD技术的研究热点。PRO/E以其强有力的草图设计、尺寸驱动修改图形的功能、成为初始设计、产品建模及修改、系列化设计、多种方案比较和动态设计的有效手段。2. 齿轮CAD系统的国内外发展概况近年来,优化设计和CAD应用在国外发展很快。在新产品设计方面普遍进行参数优化。这样它们在追踪市场、缩短技术准备周期,保证产品性能方面占了很大优势。在我国,一些企业和研究所在这方面刚刚起步,大多数工程技术人员仍然在采用手工绘图,“甩图板”的工作仍很艰难。因此在生产实际中,很多设计人员为了在特定的要求下进行齿轮的设计和造型,仍然使用手动设计这一古老的方法,这种方法工作量大、效率很低、容易出错。渐开线齿轮,由于其复杂性,一般设计者很难精确造型。有些文献指出,随着塑料齿轮模具的广泛应用和快速成型及虚拟制造技术的迅速发展,用小型CAD软件对齿轮三维基体和齿面进行造型设计己成为设计者的迫切需求。(1) 齿轮类零件CAD二维设计研究现状关于齿轮类零件二维计算机辅助设计,国内外很多学者进行了研究。运用AutoCAD进行二维设计存在着工作量大、不直观、容易出错、难于修改的缺点。实际上,基于AutoCAD的二维设计技术还不能算是一种严格意义上的设计技术,它只能说是一种辅助绘图技术。它虽然能将工程设计人员从繁重的手工绘图工作中解放出来,但对复杂投影线的生成、设计模型修改以后的图纸更新等问题,基于AutoCAD的二维设计技术是无法做到的。(2) 齿轮类零件CAD三维设计研究现状三维造型在可视化设计、装配设计、设计分析、加工仿真等方面有着二维设计无法比拟的优越性,是提高设计质量的重要手段。目前,在我国市场上推出的商品化软件中,比较优秀的国外软件有UG, SolidWorks, PRO/E, CATIA等。关于齿轮类零件三维计算机辅助设计,国内外不少学者进行了研究,从目前可以查找到的公开资料看,还没有人在PRO/E环境下实现弧齿锥齿轮的三维精确造型。锥齿轮在几何形状上非常复杂,其设计和制造方法密切相关,加工中的切齿调整方案直接影响着齿轮副的啮合质量。我国在生产中广泛使用的用于锥齿轮设计与加工的各种计算和计算机软件大多停留在20世纪70年代初期的水平。由此可见,关于锥齿轮的设计讨论对于提高我国锥齿轮的设计水平、降低研制成本、提高产品质量,具有重要的理论和实践意义。1.2 本课题的意义和研究内容及方法1.2.1. 课题研究的意义弧齿锥齿轮在航空传动中有广泛的应用,在飞行器的动力装置中占有很重要的地位。弧齿锥齿轮传动在设计和生产方面与普通机械中应用的齿轮既有相同之处,又有很大差别。近年来,人们对普通齿轮的计算机辅助设计进行了较深入的研究,而对弧齿锥齿轮的CAD研究进行得比较少。以往虽然人们对弧齿锥齿轮的计算机辅助设计也进行过研究,编制过相应的软件,但由于受当时计算机技术发展水平的限制,软件的质量比较低,使用也不太方便。目前国内外对二维图形和简单三维实体的造型较为成熟。对复杂的三维实体的造型尚不多见,特别是螺旋锥齿轮这类形状复杂、精确齿形的三维实体造型设计更少。其原因是:一方面螺旋锥齿轮二维图形参数化设计能够满足传统的齿轮加工要求,另一方面运用低级CAD软件对复杂的三维实体很难实现参数化虚拟造型设计。随着塑料齿轮的广泛应用和快速成型与虚拟制造技术的迅速发展,用大型的三维软件实现螺旋锥齿轮的参数化造型将成为设计者的迫切需求。弧齿锥齿轮实体造型的意义:(1) 齿轮传动的设计与建模系统是CAD技术与齿轮设计相结合的产物,也是两者发展的趋势所在。(2) 实现设计过程自动化避免了设计人员手动查阅大量的数据,也避免了手工取点造型的复杂过程,可以将手算设计的工作人员从繁琐、低效的工作中解放了出来。(3) 实现弧齿锥齿轮的设计,可以将设计计算、三维造型与绘制工程图的无缝结合,同时为齿轮的有限元分析、机构仿真和数控加工等工作奠定基础。(4) 采用建立原始齿轮结构模型并驱动其特征参数,为其它复杂曲面的造型提供了有益的参考。1.2.2. 课题研究的内容本课题利用大型软件PRO/E来实现齿轮,尤其弧齿锥齿轮的三维造型。具体内容如下:(1) 研究直齿、斜齿圆柱齿轮及直齿锥齿轮的基本啮合理论和建立数学模型,为弧齿锥齿轮的理论研究和数学模型的建立奠定基础;(2) 深入掌握并熟练运用PRO/E,在建立弧齿锥齿轮、圆柱齿轮和直齿锥齿轮的数学模型的基础上,实现弧齿锥齿轮三维造型;(3) 运用PRO/E对弧齿锥齿轮的啮合进行运动仿真和干涉检查。1.2.3. 课题的可行性分析PRO/E软件是集CADCAMCAE一体化的三维参数化软件,是当今世界上最为先进的计算机辅助设计、制造和分析软件之一,在国内使用相当广泛。另外它所提供的模块及其良好的高级语言接口,使PRO/E的图形功能和计算功能有机的结合起来,便于用户去从事各种工作需要。因此,在PRO/E环境下对弧齿锥齿轮进行建模,完全可以实现。2.电机选择2.1电动机选择(倒数第三页里有东东)2.1.1选择电动机类型2.1.2选择电动机容量电动机所需工作功率为:;工作机所需功率为:;传动装置的总效率为:;传动滚筒 滚动轴承效率 闭式齿轮传动效率 联轴器效率 代入数值得:所需电动机功率为:略大于 即可。选用同步转速1460r/min ;4级 ;型号 Y160M-4.功率为11kW2.1.3确定电动机转速取滚筒直径1.分配传动比(1)总传动比(2)分配动装置各级传动比取两级圆柱齿轮减速器高速级传动比则低速级的传动比2.1.4 电机端盖组装CAD截图 图2.1.4电机端盖2.2 运动和动力参数计算2.2.1电动机轴 2.2.2高速轴2.2.3中间轴2.2.4低速轴2.2.5滚筒轴3.齿轮计算3.1选定齿轮类型、精度等级、材料及齿数1按传动方案,选用斜齿圆柱齿轮传动。2绞车为一般工作机器,速度不高,故选用7级精度(GB 10095-88)。3材料选择。由表10-1选择小齿轮材料为40Cr(调质),硬度为280 HBS,大齿轮材料为45钢(调质)硬度为240 HBS,二者材料硬度差为40 HBS。4选小齿轮齿数,大齿轮齿数。取5初选螺旋角。初选螺旋角3.2按齿面接触强度设计由机械设计设计计算公式(10-21)进行试算,即3.2.1确定公式内的各计算数值(1)试选载荷系数1。(2)由机械设计第八版图10-30选取区域系数。(3)由机械设计第八版图10-26查得,则。(4)计算小齿轮传递的转矩。(5)由机械设计第八版表10-7 选取齿宽系数(6)由机械设计第八版表10-6查得材料的弹性影响系数(7)由机械设计第八版图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限 ;大齿轮的接触疲劳强度极限 。13计算应力循环次数。(9)由机械设计第八版图(10-19)取接触疲劳寿命系数; 。(10)计算接触疲劳许用应力。取失效概率为1%,安全系数S=1,由机械设计第八版式(10-12)得(11)许用接触应力3.2.2计算(1)试算小齿轮分度圆直径=49.56mm(2)计算圆周速度(3)计算齿宽及模数 =2mmh=2.252.252=4.5mm49.56/4.5=11.01(4)计算纵向重合度0.318124tan=20.73(5)计算载荷系数K。已知使用系数根据v= 7.6 m/s,7级精度,由机械设计第八版图10-8查得动载系数由机械设计第八版表10-4查得的值与齿轮的相同,故由机械设计第八版图 10-13查得由机械设计第八版表10-3查得.故载荷系数11.111.41.42=2.2(6)按实际的载荷系数校正所算得分度圆直径,由式(10-10a)得(7)计算模数 3.3按齿根弯曲强度设计由式(10-17)3.3.1确定计算参数(1)计算载荷系数。 =2.09(2)根据纵向重合度 ,从机械设计第八版图10-28查得螺旋角影响系数(3)计算当量齿数。(4)查齿形系数。由表10-5查得(5)查取应力校正系数。由机械设计第八版表10-5查得(6)由机械设计第八版图10-24c查得小齿轮的弯曲疲劳强度极限 ;大齿轮的弯曲强度极限 ;(7)由机械设计第八版图10-18取弯曲疲劳寿命系数 ,;(8)计算弯曲疲劳许用应力。取弯曲疲劳安全系数S1.4,由机械设计第八版式(10-12)得(9)计算大、小齿轮的 并加以比较。=由此可知大齿轮的数值大。3.3.2设计计算对比计算结果,由齿面接触疲劳强度计算的法面模数 大于由齿面齿根弯曲疲劳强度计算 的法面模数,取2,已可满足弯曲强度。但为了同时满足接触疲劳强度,需按接触疲劳强度得的分度圆直径100.677mm 来计算应有的齿数。于是由取 ,则 取 3.4几何尺寸计算3.4.1计算中心距a=将中以距圆整为141mm.3.4.2按圆整后的中心距修正螺旋角因值改变不多,故参数、等不必修正。3.4.3计算大、小齿轮的分度圆直径3.4.4计算齿轮宽度圆整后取.低速级取m=3;由 取圆整后取表 1高速级齿轮:名称代号计 算 公 式 小齿轮大齿轮模数m22压力角2020分度圆直径d=227=54=2109=218齿顶高齿根高齿全高h齿顶圆直径表 2低速级齿轮:名称代号计 算 公 式 小齿轮大齿轮模数m33压力角2020分度圆直径d=327=54=2109=218齿顶高齿根高齿全高h齿顶圆直径4.轴的设计4.1低速轴4.1.1求输出轴上的功率转速和转矩 若取每级齿轮的传动的效率,则4.1.2求作用在齿轮上的力因已知低速级大齿轮的分度圆直径为圆周力 ,径向力 及轴向力 的4.1.3初步确定轴的最小直径先按式初步估算轴的最小直径.选取轴的材料为45钢,调质处理.根据机械设计第八版表15-3,取 ,于是得输出轴的最小直径显然是安装联轴器处轴的直径.为了使所选的轴直径与联轴器的孔径相适应,故需同时选取联轴器型号.联轴器的计算转矩, 查表考虑到转矩变化很小,故取 ,则:按照计算转矩应小于联轴器公称转矩的条件,查标准GB/T 5014-2003或手册,选用LX4型弹性柱销联轴器,其公称转矩为2500000 .半联轴器的孔径 ,故取 ,半联轴器长度 L=112mm ,半联轴器与轴配合的毂孔长度.4.1.4轴的结构设计(1)拟定轴上零件的装配方案 图4-1(2)根据轴向定位的要求确定轴的各段直径和长度1)根据联轴器为了满足半联轴器的轴向定位要示求,1-2轴段右端需制出一轴肩,故取2-3段的直径 ;左端用轴端挡圈,按轴端直径取挡圈直径D=65mm.半联轴器与轴配合的毂孔长度,为了保证轴端挡圈只压在半联轴器上而不压在轴的端面上,故1-2 段的长度应比 略短一些,现取.2)初步选择滚动轴承.因轴承同时受有径向力和轴向力的作用,故选用单列圆锥滚子轴承.参照工作要求并根据,由轴承产品目录中初步选取 0 基本游子隙组 、标准精度级的单列圆锥滚子轴承30313。其尺寸为dDT=65mm140mm36mm,故 ;而。3)取安装齿轮处的轴段4-5段的直径 ;齿轮的右端与左轴承之间采用套筒定位。已知齿轮轮毂的宽度为90mm,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取 。齿轮的左端采用轴肩定位,轴肩高度 ,故取h=6mm ,则轴环处的直径 。轴环宽度 ,取。4)轴承端盖的总宽度为20mm(由减速器及轴承端盖的结构设计而定)。根据轴承端盖的装拆及便于对轴承加润滑脂的要求,取端盖的外端面与半联轴器右端面间的距离l=30mm,故取 低速轴的相关参数:表4-1功率转速转矩1-2段轴长84mm1-2段直径50mm2-3段轴长40.57mm2-3段直径62mm3-4段轴长49.5mm3-4段直径65mm4-5段轴长85mm4-5段直径70mm5-6段轴长60.5mm5-6段直径82mm6-7段轴长54.5mm6-7段直径65mm(3)轴上零件的周向定位齿轮、半联轴器与轴的周向定位均采用平键连接。按查表查得平键截面b*h=20mm12mm,键槽用键槽铣刀加工,长为L=63mm,同时为了保证齿轮与轴配合有良好的对中性,故选择齿轮轮毂与轴的配合为 ;同样,半联轴器与轴的连接,选用平键为14mm9mm70mm,半联轴器与轴的配合为。滚动轴承与轴的周向定位是由过渡配合来保证的,此处选轴的直径公差为m6。4.2中间轴4.2.1求输出轴上的功率转速和转矩4.2.2求作用在齿轮上的力(1)因已知低速级小齿轮的分度圆直径为:(2)因已知高速级大齿轮的分度圆直径为:4.2.3初步确定轴的最小直径先按式初步估算轴的最小直径.选取轴的材料为45钢,调质处理.根据表15-3,取 ,于是得:轴的最小直径显然是安装轴承处轴的直径。图 4-24.2.4初步选择滚动轴承.(1)因轴承同时受有径向力和轴向力的作用,故选用单列圆锥滚子轴承,参照工作要求并根据,由轴承产品目录中初步选取 0 基本游子隙组 、标准精度级的单列圆锥滚子轴承。其尺寸为dD*T=35mm72mm18.25mm,故,;(2)取安装低速级小齿轮处的轴段2-3段的直径 ;齿轮的左端与左轴承之间采用套筒定位。已知齿轮轮毂的宽度为95mm,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取 。齿轮的右端采用轴肩定位,轴肩高度,故取h=6mm,则轴环处的直径。轴环宽度,取。(3)取安装高速级大齿轮的轴段4-5段的直径齿轮的右端与右端轴承之间采用套筒定位。已知齿轮轮毂的宽度为56mm,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取。 4.2.5轴上零件的周向定位齿轮、半联轴器与轴的周向定位均采用平键连接。按查表查得平键截面b*h=22mm14mm。键槽用键槽铣刀加工,长为63mm,同时为了保证齿轮与轴配合有良好的对中性,故选择齿轮轮毂与轴的配合为 ;同样,半联轴器与轴的连接,选用平键为14mm9mm70mm,半联轴器与轴的配合为 。滚动轴承与轴的周向定位是由过渡配合来保证的,此处选轴的直径公差为m6。中间轴的参数:表4-2功率10.10kw转速362.2r/min转矩263.61-2段轴长29.3mm1-2段直径25mm2-3段轴长90mm2-3段直径45mm3-4段轴长12mm3-4段直径57mm4-5段轴长51mm4-5段直径45mm4.3高速轴4.3.1求输出轴上的功率转速和转矩若取每级齿轮的传动的效率,则4.3.2求作用在齿轮上的力因已知低速级大齿轮的分度圆直径为4.3.3初步确定轴的最小直径先按式初步估算轴的最小直径.选取轴的材料为45钢,调质处理.根据表15-3,取 ,于是得:输出轴的最小直径显然是安装联轴器处轴的直径.为了使所选的轴直径与联轴器的孔径相适应,故需同时选取联轴器型号.联轴器的计算转矩 , 查表 ,考虑到转矩变化很小,故取 ,则:按照计算转矩 应小于联轴器公称转矩的条件,查标准GB/T 5014-2003 或手册,选用LX2型弹性柱销联轴器,其公称转矩为560000 .半联轴器的孔径 ,故取 ,半联轴器长度 L=82mm ,半联轴器与轴配合的毂孔长度.4.4轴的结构设计4.4.1拟定轴上零件的装配方案图4-34.4.2根据轴向定位的要求确定轴的各段直径和长度1)为了满足半联 轴器的轴向定位要示求,1-2轴段右端需制出一轴肩,故取2-3 段的直径 ;左端用轴端挡圈,按轴端直径取挡圈直径D=45mm .半联轴器与轴配合的毂孔长度 ,为了保证轴端挡圈只压在半联轴器上 而不压在轴的端面上,故 段的长度应比 略短一些,现取.2)初步选择滚动轴承.因轴承同时受有径向力和轴向力的作用,故选用单列圆锥滚子轴承.参照工作要求并根据 ,由轴承产品目录中初步选取 0 基本游子隙组 、标准精度级的单列圆锥滚子轴承。其尺寸为d*D*T=45mm*85mm*20.75mm,故 ;而 ,mm。3)取安装齿轮处的轴段4-5段,做成齿轮轴;已知齿轮轴轮毂的宽度为61mm,齿轮轴的直径为62.29mm。4)轴承端盖的总宽度为20mm(由减速器及轴承端盖的结构设计而定)。根据轴承端盖的装拆及便于对轴承加润滑脂的要求,取端盖的外端面与半联轴器右端面间的距离l=30mm,故取。 5)轴上零件的周向定位齿轮、半联轴器与轴的周向定位均采用平键连接。按 查表查得平键截面b*h=14mm*9mm ,键槽用键槽铣刀加工,长为L=45mm,同时为了保证齿轮与轴配合有良好的对中性,故选择齿轮轮毂与轴的配合为 ;同样,半联轴器与轴的连接,选用平键为14mm9mm70mm,半联轴器与轴的配合为 。滚动轴承与轴的周向定位是由过渡配合来保证的,此处选轴的直径公差为m6。高速轴的参数:表4-3功率10.41kw转速1460r/min转矩1-2段轴长80mm1-2段直径30mm2-3段轴长45.81mm2-3段直径42mm3-4段轴长45mm3-4段直径31.75mm4-5段轴长99.5mm4-5段直径48.86mm5-6段轴长61mm5-6段直径62.29mm6-7段轴长26.75mm6-7段直径45mm5.齿轮的参数化建模5.1齿轮的建模(1)在上工具箱中单击按钮,打开“新建”对话框,在“类型”列表框中选择“零件”选项,在“子类型”列表框中选择“实体”选项,在“名称”文本框中输入“dachilun_gear”,如图5-1所示。图5-1“新建”对话框2取消选中“使用默认模板”复选项。单击“确定”按钮,打开“新文件选项”对话框,选中其中“mmns_part_solid”选项,如图5-2所示,最后单击”确定“按钮,进入三维实体建模环境。图5-2“新文件选项”对话框(2)设置齿轮参数1在主菜单中依次选择“工具”“关系”选项,系统将自动弹出“关系”对话框。2在对话框中单击按钮,然后将齿轮的各参数依次添加到参数列表框中,具体内容如图5-4所示,完成齿轮参数添加后,单击“确定”按钮,关闭对话框。图5-3输入齿轮参数(3)绘制齿轮基本圆在右工具箱单击,弹出“草绘”对话框。选择FRONT 基准平面作为草绘平面,绘制如图5-4所示的任意尺寸的四个圆。(4)设置齿轮关系式,确定其尺寸参数1按照如图5-5所示,在“关系”对话框中分别添加确定齿轮的分度圆直径、基圆直径、齿根圆直径、齿顶圆直径的关系式。2双击草绘基本圆的直径尺寸,将它的尺寸分别修改为、修改的结果如图5-6所示。 图5-4草绘同心圆 图5-5“关系”对话框 图5-6修改同心圆尺寸 图5-7“曲线:从方程”对话框(5)创建齿轮齿廓线1在右工具箱中单击按钮打开“菜单管理器”菜单,在该菜单中依次选择“曲线选项” “从方程” “完成”选项,打开“曲线:从方程”对话框,如图5-7所示。2在模型树窗口中选择坐标系,然后再从“设置坐标类型”菜单中选择“笛卡尔”选项,如图5-8所示,打开记事本窗口。3在记事本文件中添加渐开线方程式,如图5-9所示。然后在记事本窗中选取“文件” “保存”选项保存设置。图5-8“菜单管理器”对话框 图5-9添加渐开线方程4选择图5-11中的曲线1、曲线2作为放置参照,创建过两曲线交点的基准点PNTO。参照设置如图5-10所示。曲 线1曲 线 2图5-11基准点参照曲线的选择 图5-10“基准点”对话框5如图5-12所示,单击“确定”按钮,选取基准平面TOP和RIGHT作为放置参照,创建过两平面交线的基准轴A_1,如图6-13所示。图5-12“基准轴”对话框 图5-13基准轴A_16如图5-13所示,单击“确定”按钮,创建经过基准点PNTO和基准轴A_1的基准平面DTM1,如图5-14所示。5 5-15基准平面对话框 5-15基准平面DTM17如图5-16所示,单击“确定”按钮,创建经过基准轴A_1,并由基准平面DTM1转过“-90/z”的基准平面DTM2,如图5-17所示。图5-16“基准平面”对话框 图5-17基准平面DTM28镜像渐开线。使用基准平面DTM2作为镜像平面基准曲线,结果如图5-18所示。图5-18镜像齿廓曲线(6)创建齿根圆实体特征1在右工具箱中单击按钮打开设计图标版。选择基准平面FRONT作为草绘平面,接收系统默认选项放置草绘平面。2在右工具箱中单击按钮打开“类型”对话框,选择其中的“环”单选按钮,然后在工作区中选择图5-19中的曲线1作为草绘剖面。再图标中输入拉伸深度为“b”,完成齿根圆实体的创建,创建后的结果如图5-20所示。图5-19草绘的图形 5-20拉伸的结果(7)创建一条齿廓曲线1在右工具箱中单击按钮,系统弹出“草绘”对话框,选取基准平面FRONT作为草绘平面后进入二维草绘平面。2在右工具箱单击按钮打开“类型”对话框,选择“单个”单选按钮,使用和并结合绘图工具绘制如图5-21所示的二维图形。图 5-21 草绘曲线图 5-22显示倒角半径3打开“关系”对话框,如图5-22所示,圆角半径尺寸显示为“sd0”,在对话框中输入如图5-23所示的关系式。图5-23“关系“对话框(8)复制齿廓曲线1在主菜单中依次选择“编辑” “特征操作”选项,打开“菜单管理器”菜单,选择其中的“复制”选项,选取“移动”复制方法,选取上一步刚创建的齿廓曲线作为复制对象。图5-24依次选取的 菜单2选取“平移”方式,并选取基准平面FRONT作为平移参照,设置平移距离为“B”,将曲线平移到齿坯的另一侧。图5-25输入旋转角度3继续在“移动特征”菜单中选取“旋转”方式,并选取轴A_1作为旋转复制参照,设置旋转角度为“asin(2*b*tan(beta/d)”,再将前一步平移复制的齿廓曲线旋转相应角度。最后生成如图5-26所示的另一端齿廓曲线。图5-26创建另一端齿廓曲线(9)创建投影曲线1在工具栏内单击按钮,系统弹出“草绘”对话框。选取“RIGUT”面作为草绘平面,选取“TOP”面作为参照平面,参照方向为“右”,单击“草绘”按钮进入草绘环境。2绘制如图5-27所示的二维草图,在工具栏内单击按钮完成草绘的绘制。图5-27绘制二维草图3主菜单中依次选择“编辑” “投影”选项,选取拉伸的齿根圆曲面为投影表面,投影结果如下图5-28所示。图5-28投影结果(10)创建第一个轮齿特征1在主菜单上依次单击“插入” “扫描混合”命令,系统弹出“扫描混合”操控面板,如图5-29所示。2在“扫描混合”操控面板内单击“参照”按钮,系统弹出“参照”上滑面板,如图6-30所示。图5-29 “扫描混合”操作面板 图5-30“参照”上滑面板3在“参照”上滑面板的“剖面控制”下拉列表框内选择“垂直于轨迹”选项,在“水平/垂直控制”下拉列表框内选择“垂直于曲面”选项,如图5-30示。4在绘图区单击选取分度圆上的投影线作为扫描混合的扫引线,如图5-31示。扫描引线图5-31选取扫描引线5在“扫描混合”操作面板中单击“剖面”按钮,系统弹出“剖面”上滑面板,在上方下拉列表框中选择“所选截面”选项,如图5-32所示。图5-32“剖面”上滑面板 图5-33 选取截面6在绘图区单击选取“扫描混合”截面,如图5-33所示。7在“扫描混合”操控面板内单击按钮完成第一个齿的创建,完成后的特征如图5-34所示。图5-34完成后的轮齿特征 图5-35“选择性粘贴“对话框(11)阵列轮齿1单击上一步创建的轮齿特征,在主工具栏中单击按钮,然后单击按钮,随即弹出“选择性粘贴”对话框,如图5-35所示。在该对话框中勾选“对副本应用移动/旋转变换”,然后单击“确定”按钮。图5-36 旋转角度设置 图5-37复制生成的第二个轮齿2单击复制特征工具栏中的“变换”,在“设置”下拉菜单中选取“旋转”选项,“方向参照”选取轴A_1,可在模型数中选取,也可以直接单击选择。输入旋转角度“360/z”,如图6-36所示。最后单击按钮,完成轮齿的复制,生成如图6-37所示的第2个轮齿。3在模型树中单击刚刚创建的第二个轮齿特征,在工具栏内单击按钮,或者依次在主菜单中单击“编辑” “阵列”命令,系统弹出“阵列”操控面板,如图6-38所示。图5-38 “阵列”操控面板图5-39 完成后的轮齿 图5-40齿轮的最终结构4在“阵列”操控面板内选择“轴”阵列,在绘图区单击选取齿根园的中心轴作为阵列参照,输入阵列数为“88”偏移角度为“360/z”。在“阵列”操控面板内单击按钮,完成阵列特征的创建,如图5-39所示。5最后“拉伸”、“阵列”轮齿的结构,如图5-40所示ee致谢本论文是在ee老师的悉心指导下完成的。e老师渊博的专业知识,严谨的治学态度,精益求精的工作作风,诲人不倦的高尚师德,严以律己、宽以待人的崇高风范,朴实无华、平易近人的人格魅力对我影响深远。不仅使我树立了远大的学术目标、掌握了基本的研究方法,还使我明白了许多待人接物与为人处世的道理。本论文从选题到完成,每一步都是在导师的指导下完成的,倾注了导师大量的心血。在此,谨向e老师表示崇高的敬意和衷心的感谢! 本论文的顺利完成,离不开各位老师、同学和朋友的关心和帮助。感谢CAD培训中心老师的指导和帮助。后文是被我人为屏蔽掉了,想要原版吗?小伙伴,在第2章电机选择中CAD图里找我联系方式吧参考文献1王定.矿用小绞车M.北京:煤炭工业出版社,1981.2程居山.矿山机械M.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论