




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高数2练习一、选择题1、设是一非零向量,是一实数,若_则(均为向量) A. B. C. D.且2、若,则在下列结论正确的是 ( )、连续, 、偏导数存在, 、有极值, 、可微.3、交换积分的秩序等于( ) A. B. C. D.4、设是从点沿折线至点的折线段,则积分等于( )A.0 B.-1 C.2 D.-2 5、下列命题错误的是 ( ) A. 如果与都收敛,则必收敛 B.如果收敛,发散,则必发散 C.如果与都发散,则不一定发散 D.如果收敛,则与必都收敛6、下列级数中发散的是 ( ) A、 B、 C、 D、7、下列级数中条件收敛的是 ( ) (A) (B) (C) (D)8、若为两非零向量,则是同向的( )A.充要条件 B.必要条件 C.充分条件 D.既非充分也非必要条件9、函数在(0,0)处( )A、 不连续 B、 偏导数不存在 C、 任一方向的方向导数存在 D、可微10、交换积分次序后,( )A. B. C. D.11、已知为某函数的全微分,则等于( )A、 -1 B、 0 C、1 D、212、设直线L:及平面:,则直线L于平面的位置关系是直线L( ) A.在平面上 B. 平行于平面 C. 垂直于平面 D. 与平面斜交13、设函数,则=( )A. B. C. D. 14、函数在点使其方向导数取得最大值的单位方向向量是( )A B. C. D. 15、 交换二次积分的次序为( )A. B. C. D. 16、下列级数中绝对收敛的级数是( ) A. B . C. D.二、填空题 1、过原点且与直线垂直的平面方程为_ 2、由方程所确定的函数全微分_ _.3、=_4、设函数,则 _ _.5、设为椭圆,其周长为,则= .6、设为常数若级数,收敛,则_7、级数的收敛域为_8、过点M(1,4,3)且法向量为n=i-j+k的平面方程_9、z=lnx, 则=_10、函数z=的定义域_11、设,则 _12、当_时,向量 相互垂直13、求=_,其中L为连接(1,0)及(0,1)两点的直线段14、以曲面z=sin(xy)为顶,D:-1x1,-1y1为底的曲顶柱体体积的二重积分表达式_15、若L是平行于y轴的有向线段则_16、过点且与平面平行的平面方程为 17、设确定函数,则= 18、设为上从点到之间的曲线段,则 19、设是上半球面与坐标面围成的闭曲面的外侧,则 = 20、常数项级数的和 三、计算题1、已知曲面 上的点处的切平面平行于平面 ,求点处的切平面方程.2、设 ,求.3、计算,其中是由曲线与直线所围成.4、验证:在整个平面内,是某个函数的全微分,并求出一个这样的函数5、已知曲线积分与路径无关,其中具有一阶连续导数,且,求的值.6、计算曲线积分,其中是半圆周上从到的有向弧段.7、将下列函数展开为的幂级数.(1) ,(2) (3)8、在曲线x=t,y=上求一点,使该点的切线平行于平面x+2y+z=4。并求此切线9、设10、设函数由方程所确定,求11、计算二重积分 12、 已知,求全微分及13、。14、在球面的下半球面上求一点,使这点处的法线与直线 平行,并写出该法线的方程。15设,其中具有连续的偏导数,求16、计算,其中是曲线所围成区域17、计算曲线积分,其中为摆线上从点到点的一段曲线弧。18、 求幂级数的收敛域四、应用题1、在平面上求一点,使它到及三直线的距离平方之和为最小.2、计算由曲面与所围成的立体的体积.3、某公司通过电台及报纸做某商品的销售广告,据统计,销售收入(万元)与电台广告费(万元)及报纸广告费(万元)的函数关系为,求(1)求不限广告费时的最优广告策略,即求使得利润最大的电台和报纸的广告费(营销成本);(2)求在仅用1.5万元做广告时的最优广告策略.4、 在椭球面内作内接长方体, 求当内接长方体的长、宽、高为多少时长方体体积最大?5、质量均匀分布的直角三角形薄片,两直角边长分别为a,b,试求这三角形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 事业单位聘用合同签订与离职后竞业限制协议的衔接
- 离婚协议简化版:财产分割与子女监护权移交协议
- 金融行业专属劳务派遣服务及劳动合同双重管理合同
- 慕槿川离婚协议中的房产分割与使用权协议
- 2025年放射治疗科肿瘤放疗操作规范考题答案及解析
- 离婚财产分配协议中车辆贷款归属调整协议
- 硅石矿采矿权租赁与深加工产品研发投资合同
- 2025年娄底中考化学真题及答案
- 2025-2030动力总成电气化转型趋势与零部件供应链重塑报告
- 2025-2030功能性饮料行业消费群体细分及市场容量预测报告
- ISO 22000-2018食品质量管理体系-食品链中各类组织的要求(2023-雷泽佳译)
- 卡巴斯基应急响应指南
- 理财规划大赛优秀作品范例(一)
- 2023年四川能投筠连电力招聘笔试参考题库附带答案详解
- 护理管理组织结构与设计
- 静配中心清洁消毒考核试题
- 一级烟草专卖管理师理论考试题库(含答案)
- 小学数学《分数除法》50道应用题包含答案
- 碳捕集、利用与封存技术课件
- 化工试生产总结报告
- 复句与单句的辨析课件
评论
0/150
提交评论