解斜三角形很好的模版.doc_第1页
解斜三角形很好的模版.doc_第2页
解斜三角形很好的模版.doc_第3页
解斜三角形很好的模版.doc_第4页
解斜三角形很好的模版.doc_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

解三角形三【要点精讲】1直角三角形中各元素间的关系:如图,在ABC中,C90,ABc,ACb,BCa。(1)三边之间的关系:a2b2c2。(勾股定理)(2)锐角之间的关系:AB90;2斜三角形中各元素间的关系:如图6-29,在ABC中,A、B、C为其内角,a、b、c分别表示A、B、C的对边。(1)三角形内角和:ABC。(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。(R为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a2b2c22bccosA;b2c2a22cacosB;c2a2b22abcosC。3三角形的面积公式:(1)ahabhbchc(ha、hb、hc分别表示a、b、c上的高);(2)absinCbcsinAacsinB;4解斜三角形的主要依据是:设ABC的三边为a、b、c,对应的三个角为A、B、C。(1)角与角关系:A+B+C = ;(2)边与边关系:a + b c,b + c a,c + a b,ab c,bc b;(3)边与角关系:正弦定理 (R为外接圆半径);余弦定理 c2 = a2+b22bccosC,b2 = a2+c22accosB,a2 = b2+c22bccosA;它们的变形形式有:a = 2R sinA,。5三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。(1)角的变换因为在ABC中,A+B+C=,所以sin(A+B)=sinC;cos(A+B)=cosC;tan(A+B)=tanC。;(2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。SabsinCbcsinAacsinB;1.(2010上海)18.若的三个内角满足,则(A)一定是锐角三角形. (B)一定是直角三角形.(C)一定是钝角三角形. (D)可能是锐角三角形,也可能是钝角三角形.解析:由及正弦定理得a:b:c=5:11:13 由余弦定理得,所以角C为钝角2.(2010湖北理)3.在中,a=15,b=10,A=60,则=A B C D 【解析】根据正弦定理可得解得,又因为,则,故B为锐角,所以,故D正确.3.(2010天津理)(7)在ABC中,内角A,B,C的对边分别是a,b,c,若,则A=(A) (B) (C) (D)【解析】:由由正弦定理得,所以cosA=,所以A=3004.(2010辽宁)(8)平面上三点不共线,设,则的面积等于(A) (B) (C) (D)5.(2008福建)在ABC中,角A、B、C的对边分别为a、b、c,若(a2+c2-b2)tanB=,则角B的值为 ( )A. B. C.或 D.或6(2008陕西)的内角A、B、C的对边分别为a、b、c,若,则等于( )A B2CD7.(2007重庆)在中,则( ) 8.(2006年全卷I) 的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=( )A B C D9.(2009岳阳一中第四次月考).已知中,则( ) A. B C D 或10在ABC中,若2cosBsinAsinC,则ABC的形状一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形11.(2010全国卷2理数)(17)(本小题满分10分)中,为边上的一点,求【命题意图】本试题主要考查同角三角函数关系、两角和差公式和正弦定理在解三角形中的应用,考查考生对基础知识、基本技能的掌握情况.【参考答案】由cosADC=0,知B.由已知得cosB=,sinADC=.从而 sinBAD=sin(ADC-B)=sinADCcosB-cosADCsinB=.由正弦定理得 ,所以=.12.(2009全国卷)(本小题满分12分)设ABC的内角A、B、C的对边长分别为a、b、c,,,求B.解:由 cos(AC)+cosB=及B=(A+C)得 cos(AC)cos(A+C)=, cosAcosC+sinAsinC(cosAcosCsinAsinC)=, sinAsinC=.又由=ac及正弦定理得 故 , 或 (舍去),于是 B= 或 B=.又由 知或所以 B=。13(2008全国)在中, ()求的值;()设的面积,求的长解:()由,得,由,得所以5分()由得,由()知,故 ,8分又 ,故 ,所以 10分14.(2007全国)在中,已知内角,边设内角,周长为(1)求函数的解析式和定义域;(2)求的最大值解:(1)的内角和,由得应用正弦定理,知,因为,所以,(2)因为,所以,当,即时,取得最大值15.(2007全国)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,()求B的大小;()若,求b解:()由,根据正弦定理得,所以,由为锐角三角形得()根据余弦定理,得所以,16.(2010天津理)在ABC中,。()证明B=C:()若=-,求sin的值。解 :()证明:在ABC中,由正弦定理及已知得=.于是sinBcosC-cosBsinC=0,即sin(B-C)=0.因为,从而B-C=0. 所以B=C. ()解:由A+B+C=和()得A=-2B,故cos2B=-cos(-2B)=-cosA=.又02B,于是sin2B=. 从而sin4B=2sin2Bcos2B=,cos4B=. 所以17.(2010辽宁)在中,分别为内角的对边,且()求的大小;()求的最大值. ()若,试判断的形状.解:()由已知,根据正弦定理得即由余弦定理得 故 ()由()得: 故当B=30时,sinB+sinC取得最大值1。 ()由()得又,得因为,故所以是等腰的钝角三角形。2.(2010重庆文数)已知是首项为19,公差为-2的等差数列,为的前项和.()求通项及;()设是首项为1,公比为3的等比数列,求数列的通项公式及其前项和.3.(2010山东文数) 已知等差数列满足:,.的前n项和为. ()求 及;()令(),求数列的前n项和. .4.(2010四川文数)已知等差数列的前3项和为6,前8项和为-4。()求数列的通项公式;w_w w. k#s5_u.c o*m()设,求数列的前n项和5.已知数列的首项,()证明:数列是等比数列;()求数列的前项和6.设各项均为正数的数列的前项和为,且满足:(1) 求; (2)求出数列的通项公式(写出推导过程);(3) 设,求数列的前项和。7. (2009陕西卷文)已知数列满足, .令,证明:是等比数列; ()求的通项公式。 8. (2009全国卷理)设数列的前项和为 已知(I)设,证明数列是等比数列 (II)求数列的通项公式。3.(2010天津理数)(17)(本小题满分12分)已知函数()求函数的最小正周期及在区间上的最大值和最小值;()若,求的值。(1)解:由,得所以函数的最小正周期为因为在区间上为增函数,在区间上为减函数,又,所以函数在区间上的最大值为2,最小值为-1()解:由(1)可知又因为,所以由,得从而所以4.(2010广东理数)16、(本小题满分14分)已知函数在时取得最大值4(1)求的最小正周期;(2)求的解析式;(3)若(+)=,求sin,5.(2010湖南理数)16(本小题满分12分)已知函数()求函数的最大值;(II)求函数的零点的集合。6.(2010湖北理) 16(本小题满分12分) 已知函数f(x)=()求函数f(x)的最小正周期;()求函数h(x)=f(x)g(x)的最大值,并求使h(x)取得最大值的x的集合。7.(银川一中2009届高三年级第一次模拟考试)已知函数.(1)若; (2)求函数在上最大值和最小值解:(1)2分由题意知 ,即 3分 即 6分(2) 即 8分, 12分5.(2010全国卷1理数)(19)(本小题满分12分)如图,四棱锥S-ABCD中,SD底面ABCD,AB/DC,ADDC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC平面SBC .()证明:SE=2EB;()求二面角A-DE-C的大小 . 3.(2010辽宁理数)(19)(本小题满分12分)已知三棱锥PABC中,PAABC,ABAC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.()证明:CMSN;()求SN与平面CMN所成角的大小.证明:设PA=1,以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系如图。则P(0,0,1),C(0,1,0),B(2,0,0),M(1,0,),N(,0,0),S(1,0).4分(),因为,所以CMSN 6分(),设a=(x,y,z)为平面CMN的一个法向量,则 9分因为所以SN与片面CMN所成角为45。 12分7. ABCDEA1B1C1D1(2008全国19)(本小题满分12分)如图,正四棱柱中,点在上且()证明:平面;()求二面角的大小以为坐标原点,射线为轴的正半轴,ABCDEA1B1C1D1yxz建立如图所示直角坐标系依题设,()证明 因为,故,又,所以平面()解 设向量是平面的法向量,则,故,令,则,等于二面角的平面角,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论