生物质论文:基于ANSYS的秸秆活塞式成型特性及摩擦热分析.doc_第1页
生物质论文:基于ANSYS的秸秆活塞式成型特性及摩擦热分析.doc_第2页
生物质论文:基于ANSYS的秸秆活塞式成型特性及摩擦热分析.doc_第3页
生物质论文:基于ANSYS的秸秆活塞式成型特性及摩擦热分析.doc_第4页
生物质论文:基于ANSYS的秸秆活塞式成型特性及摩擦热分析.doc_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

生物质论文:基于ANSYS的秸秆活塞式成型特性及摩擦热分析【中文摘要】秸秆固化成型技术能使松散的秸秆致密化,提高秸秆能量密度和燃烧特性,使其可作为清洁能源直接替代煤用于生产生活各个领域,同时也能解决秸秆储存、运输困难问题,是实现秸秆综合化、规模化利用的重要技术手段。但是目前该技术尚需在成型过程特性及成型摩擦热方面加深理论研究,揭示秸秆成型粘结机理,为成型制品品质预测和控制、设备优化提供理论依据。本文通过对秸秆化学组成、物理特性及常温成型机理的分析,得出影响秸秆常温固化成型品质的关键因素是压缩力和成型过程中的摩擦热。基于该结论,根据活塞式成型技术间歇式生产的特点,对活塞一次冲压成型中成型力变化和物料移动进行实验研究,提出适合活塞式成型技术的“半闭式”成型模型,即成型过程未达到推移阶段前,物料相当于在由模具和靠摩擦力作用下保持静止的已成型制品组成的闭式环境中进行压缩。运用弹塑性力学、接触力学、粘弹性和有限元理论对秸秆固化成型主压缩阶段进行限元分析,研究主压缩阶段物料形变规律、应力分布及接触应力情况,为模具设计和成型工艺改进提供方法指导和依据。基于摩擦学、传热学原理,结合秸秆活塞式常温成型技术的特点,对成型过程中的摩擦热问题进行研究,通过引入平均压力、当量速度等物理量推导成型过程中摩擦热产生方程,将成型过程摩擦热问题转化为第二、三类边界条件的无内热源的非稳态传热问题;建立成型摩擦热有限元分析模型,对摩擦热引起的温度场分布进行研究,并通过实验验证有限元模拟的正确性,得出摩擦热引起的温度场变化规律;通过对实验样机在不同生产率条件下的摩擦热模拟分析,研究表明模具在摩擦热作用下,温度随着时间升高并稳定在一定温度,其增长速度和稳态温度随着生产率的提高而提高。在摩擦热引起的温度场规律研究基础上,针对目前秸秆类生物质材料的热物性参数欠缺的现状,进行了秸秆物性参数的实验研究,得出秸秆导热系数、比热随含水率、温度和密度的变化规律,为本文研究摩擦热引起的温度场在成型制品的传导提供数据支持的同时,也能为秸秆类材料热相关的技术研究提供依据;建立秸秆成型过程中摩擦热传导模型,分析不同条件下摩擦热在制品内的分布及对木质素粘结作用进行分析,研究表明制品内温度场分布是由模具温度和制品在模具内滞留时间共同决定的;对于本文实验样机,虽然当生产率为60kg/h时,摩擦热引起的温度场能达到220230,生产率为50kg/h时温度场为180190,但是由于制品在模具内滞留时间的影响,生产率为50kg/h,制品中心木质素也能达到软化温度,成型品质较高;该研究能为成型生产工艺改进、提高成型品质和设备设计提供理论依据。【英文摘要】Straw curing briquetting technology can densify unconsolidated straws, increase the energy density, improve the combustion properties, replace coals as clean energy used in every field of production and living, and solve storage and transportation problems. It is an important technical method of integrated and large-scale use of straws. However, it still needs to be deepened on the theoretical research of briquetting process properties and briquetting frictional heat, so as to reveal briquetting adhesive mechanism of straws, and provide theory support for predicting and controlling quality of briquetting products and optimizing equipments.Through the analysis of chemical compositions, physical properties and normal temperature briquetting mechanism of straws, it can be concluded that the key factor of impacting curing briquetting qualities under normal temperature is compression force and frictional heat in the briquetting process. Based on this conclusion, changes of riquetting forces and transportation of materials in the piston one-time stamping molding process are studied according to properties of piston-type briquetting technologies. Semi-closed briquetting model that suits to the piston-type briquetting technologies is built:materials are compressed in the closed environment equivalent to be made up of mould and briquetted products which remains stationary by the action of friction. The finite element analysis method is established in the primary compression stage of straw curing briquetting using the plastoelasticity, contact mechanics, viscoelastic and finite element theory. With this method, material deformation law, stress distribution and contact stress situation in the primary compression stage are studied, which provides method guideline to mold design and briquetting process improvement.Research on frictional heat in the briquetting process is carried out combing with piston-type nomal tempreture briquetting technologies based on tribology and heat transfer theroy. By introducing physical quantity such as average pressure and equivalent velocity, the equation of the frictional heat generation in the briquetting process is derived, which converts the frictional heat problem in the briquetting process into transient heat transfer problems without inner heat source under the second and third boundary condition. The finite element analysis model of briquetting frictional heat is built, and then the temperature field distribution caused by frictional heat is researched. The rule of temperature field variation caused by frictional heat is drawn through validating the correctness of finite element simulation by experiments. Based on the frictional heat simulation and analysis of prototype under different productivities conditions, it is shown that the tempreture of the mould is increasing and remain stable at a certain tempreture over time under the action of frictional heat, and the growth rate and steady temperature go up with the increasing productivities.On the basis of research on the rule of temperature field distribution caused by frictional heat, the experimental study of straw thermophysical parameters is carried out according to lack of thermophysical parameters of biomass materials currently. The change rule of thermal conductivity and specific heat with the changes of moisture content, tempreture and density is obtained. It can not only provide data support for the research on conduction of temperature field caused by frictional heat in briquetting products, but also provide basis for research on technologies related to heat of straws. The model of friction heat transfer in the straw briquetting process is built. And the distribution of frictional heat in briquetting products under different conditions is analyzed; aslo the cohesive action of lignin is studied. It is revealed that temperature field distribution in briquetting products is determined by both mold temperature and residence time that the briquetting products stay in the mold. With regard to the prototype in this paper, when the productivity is 60kg/h, the temperature field caused by frictional heat can reach 220-230, and when the productivity is 50kg/h, the temperature field is 180190. However, because of the impact of residence time that the briquetting products stay in the mold, when the productivity is 50kg/h, the lignin in the center of briquetting products can also be softened, and the briquetting quality is high. This research can provide theoretical basis for improving briquetting process, briquetting quality and eqipment design.【关键词】生物质 秸秆成型 有限元 主压缩 摩擦热【英文关键词】Biomass Straw briquetting Finite element Primary compression Frictional heat【目录】基于ANSYS的秸秆活塞式成型特性及摩擦热分析摘要11-13Abstract13-14第1章 绪论15-271.1 课题研究背景及意义15-171.1.1 研究背景15-161.1.2 研究意义16-171.2 成型工艺与设备简介17-191.2.1 活塞式成型17-181.2.2 螺旋式成型181.2.3 模压式成型18-191.3 国内外研究现状19-241.3.1 压缩特性研究19-211.3.2 流变学研究21-221.3.3 应力应变分布规律221.3.4 成型影响因素及优化研究22-241.4 研究中存在的问题241.5 课题研究内容24-27第2章 秸秆常温活塞式固化成型技术27-432.1 秸秆成型特性分析27-302.1.1 基本化学组成27-282.1.2 主要化学成分在成型过程中的作用28-292.1.3 物理特性29-302.1.4 成型机理302.2 秸秆活塞式成型过程分析30-352.2.1 结构及工作过程312.2.2 活塞式冲压成型技术特点31-332.2.3 成型过程的分解33-352.2.4 保证成型品质的关键阶段352.3 秸秆固化成型中的非线性问题35-412.3.1 有限变形描述35-372.3.2 弹塑性非线性37-392.3.3 接触非线性39-412.4 本章小结41-43第3章 秸秆活塞式固化成型主压缩分析43-633.1 引言433.2 可压缩连续体假设43-443.3 秸秆固化成型有限元弹塑性本构方程44-533.3.1 屈服准则44-483.3.2 强化准则483.3.3 流动准则48-493.3.4 秸秆固化成型本构方程49-533.4 秸秆固化成型有限元对接触问题的处理53-543.5 秸秆固化成型主压缩有限元模拟54-583.5.1 建立模型54-553.5.2 选择单元和材料特性553.5.3 网格划分55-563.5.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论