




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考试题“数学化”赏析罗全民(贵州省遵义市教育局教研室,563000)胡 军(贵州省道真县玉溪镇中心学校 563500) 数学化就是数学地组织现实世界的过程。数学化包括两个方面:一方面是对客观现实数学化,另一方面是对数学本身的数学化。在本年度中考试题中,不少命题专家从应试者的心理承受能力出发,设计出了不少既考查学生对数学核心概念、思想方法的理解及运用水平,又使学生在考试过程中经历数学化的过程,从而提高自身的文化素养和创新意识的试题。1.传承数学文化、让学生体验数学化的科学价值新课标指出:“数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分”。 “是人类社会进步的产物,也是推动社会发展的动力”。中考作为一种社会文化现象,必然要从属和服务于社会意识形态和特定的文化结构,必须要承载社会赋予其特定的功能数学化。例1:(2011年温州中考题)我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图11)。图12由弦图变化得到,它是由八个全等的直角三角形拼接而成。记图12中正方形,正方形,正方形的面积分别为,若=10,则的值是 。解析:由题意可知,。又由=10,易得:的值是赏析:勾股定理是人类最伟大的十个科学发现之一。有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它。赵爽的证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。学生通过解此题,进一步体验了形数统一的思想方法,又一次经历了认识勾股定理的数学化过程。受到优秀文化的熏陶,传承了中华民族悠悠五千年文化史。2. 关注问题情境、让学生经历数学化的思维过程在命制中考试题中,如何创设试题情境是一种智慧的挑战。试题情境需要命题教师对教学本身进行周密思考与精心设计,试题情境要学生在应试过程中自己去经历、体会、理解,要有让学生思考的时间和空间,使学生在一个曾经历过的熟悉的背景下,产生一种巨大的无形的导引效应,使自己全身心投入到解决问题的数学化过程活动中,从自己的经验出发,运用属于自己的方式和策略,寻找解决问题的方法,发现和整理属于自己的不同形式的解题策略,经历数学化的过程。例2:(2011年南京市中考题):问题情境已知矩形的面积为(为常数,),当该矩形的长为多少时,它的周长最小?最小值是多少?数学模型设该矩形的长为,周长为,则与的函数关系式为。探索研究我们可以借鉴以前研究函数的经验,先探索函数的图象性质。 填写下表,在图21中画出函数的图象:1234观察图象,写出该函数两条不同类型的性质;在求二次函数的最大(小)值时,除了通过观察图象,还可以通过配方得到请你通过配方求函数的最小值。解决问题用上述方法解决“问题情境”中的问题,直接写出答案。解析:将表中的值代入中计算可得的值分别为: ,2,。描点并画出函数的图象如图22所示。本题答案不唯一。要根据图象,可得:当时,随增大而减小;当时,随增大而增大;当时函数的最小值为2等。当,即时,函数的最小值为2 当该矩形的长为时,它的周长最小,最小值为赏析:本题首先提出一个具体的问题情境,即“已知矩形的面积为(为常数,),当该矩形的长为多少时,它的周长最小?最小值是多少?”让学生借鉴已经掌握的研究函数的经验,突出学科结合与高中内容的衔接,先探索函数的图象性质,再解决“问题情境”中提出的问题。其过程就是经历数学化的思维过程。试题注重创造“最近发展区”, 引发学生思考,让学生在思考中体验知识的形成过程,让学生始终处于“思考收获再思考再收获”的这样一种情感体验之中。用睿智的语言加以点化,突现评价的导向功能,从而激发和培养学生的数学化思考,引领学生的思维往纵深发展,保证学生应试过程中在和谐融洽的气氛中按既定目标顺利进行。例3:(2011年盐城中考题)情境观察:将矩形纸片沿对角线剪开,得到和,如图31所示,将的顶点与点重合,并绕点按逆时针方向旋转,使点、在同一条直线上,如图32所示。观察图6可知:与相等的线段是 , 。问题探究如图33,中,于点,以为直角顶点,分别以、为直角边,向外作等腰和等腰,过点、作射线的垂线,垂足分别为、.。试探究与之间的数量关系,并证明你的结论。拓展延伸如图34,中,于点,分别以、为一边向外作矩形和矩形,射线交于点。若,试探究与之间的数量关系,并说明理。 解析:情境观察:易见与相等的线段是,它们是矩形的对边。问题探究:找一个可能与和都相等的线段。考虑,这用易证,得出。同样考虑,得出,从而得证。拓展延伸:如图35,过点作,垂足分别为、。与问题探究相仿,只不过将全等改为相似,证出,再证,从而得证。赏析:本题是研究性学习问题,在问题设计上层层深入,每一步都为下一步的思维活动打下基础,是一个蕴涵了让学生经历观察、猜测、合情推理、有条理论证的数学化思维过程,考查了基于数学实验的数学问题形的一般思路及探究能力。3、回归教育本原、贴近学生数学化发展需求陶行知先生曾说过:“教育必须做到解放学生的眼睛,让他们亲自看一看;解放学生的大脑,让他们亲自想一想;解放学生的嘴巴,让他们亲自说一说;解放学生的双手,让他们亲自做一做。”我们认为,这是对素质教育的最佳诠释。回归教育本原、贴近学生数学化发展需求,是全面实施数学素质教育的根本所在。中考命题中如何从具体情境中抽象出数学材料,并将获得的材料符号化,体现了数学问题源于教学但高于教学的教学理念,使试题始终散发着“数学味”,促进学生个性得充分发展一直是各地命题专家关注的热点。例4(2011年北京市中考题)阅读下面材料:小伟遇到这样一个问题,如图41,在梯形ABCD中,ADBC,对角线AC,BD相交于点O。若梯形ABCD的面积为1,试求以AC,BD,的长度为三边长的三角形的面积。小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可。他先后尝试了翻折,旋转,平移的方法,发现通过平移可以解决这个问题。他的方法是过点D作AC的平行线交BC的延长线于点E,得到的BDE即是以AC,BD,的长度为三边长的三角形(如图42)。参考小伟同学的思考问题的方法,解决下列问题:如图43,ABC的三条中线分别为AD,BE,CF。在图3中利用图形变换画出并指明以AD,BE,CF的长度为三边长的一个三角形(保留画图痕迹);若ABC的面积为1,则以AD,BE,CF的长度为三边长的三角形的面积等于_。解析:本题画法很多,答案不唯一。如:方法一:如图44,过作的平行线与过作的平行线相交于点,则为所求。方法二:如图45,延长至,使,取的中点。为所求;如图45,由已知易得,要求的面积,需要证的面积等于四边形面积。由知四边形是平行四边形,设与交于,与交于,则,有, (同底且等高)。两式相加可得结果。本题图形的本质特征是:以三角形三条中线为边的三角形面积是原三角形面积的。例5:(2011年绍兴市中考题)数学课上,李老师出示了如下题目。在等边三角形中,点在上,点在的延长线上,且,如图51,试确定线段与的大小关系,并说明理由。小敏与同桌小聪讨论后,进行了如下解答:特殊情况,探索结论当点为的中点时,如图51,确定线段与的大小关系,请你直接写出结论: (填“”,“”,“”或“=”).理由如下:如图52,过点作,交于点。(请你完成以下解答过程)拓展结论,设计新题在等边三角形中,点在直线上,点在直线上,且.若的边长为1,求的长(请你直接写出结果)。解析:解析:由题意易知:由的结论猜想。然后证明此结论。如图52,过点作,交于点。易知是等边三角形,即,。由,得,又已知,所以。所以,即。此时实际上是图形的变式,变式图53时结果是1,变式图54为时结果是3。赏析:此上两题都以范例的形式给出,并在解决问题的过程中暗示解题思路,要求学生在理解的基础上进行迁移运用,再以活动中获得的数学经验与知识解决新问题。其实际是在中考中让学生回归教育的本原,求探索基本图形本质特征,贴近学生数学化发展需。体现了数学问题源于教学但高于教学的教学理念,使试题始终散发着“数学味”。4.立足核心概念、寻求试题考查题功能数学化例6:(2011年遵义市中考题)已知抛物线经过, 两点,且与轴交于点。求抛物线的函数关系式及点的坐标;如图61,连接,在题中的抛物线上是否存在点,使是以为直角边的直角三角形?若存在,求出点的坐标;若不存在,请说明理由;如图62,连接,为线段上任意一点(不与、重合)经过、三点的圆交直线于点,当的面积取得最小值时,求点的坐标(遵义市中考题第27题(压轴题),分值14分,以下简称“题目”)。解析:将A(3,0),B(4,1)代人 得, ,C(0,3) (2)假设存在,分两种情况,如图。连接AC, OA=OC=3, OAC=OCA=45O.过B作BD轴于D,则有BD=1,,BD=AD, DAB=DBA=45O.BAC=180O-45O-45O=90O。ABC是直角三角形. C(0,3)符合条件.P1(0,3)为所求. 当ABP=90O时,过B作BPAC,BP交抛物线于点P. A(3,0),C(0,3),直线AC的函数关系式为 将直线AC向上平移2个单位与直线BP重合.则直线BP的函数关系式为,由,得,又B(4,1), P2(-1,6). 综上所述,存在两点P1(0,3), P2(-1,6). 另解当ABP=90O时, 过B作BPAC,BP交抛物线于点P. A(3,0),C(0,3),直线AC的函数关系式为,将直线AC向上平移2个单位与直线BP重合.则直线BP的函数关系式为。点P在直线上,又在上.设点P为,解得P1(-1,6), P2(4,1)(舍) ,综上所述,存在两点P1(0,3), P2(-1,6).(3) OAE=OAF=45O,而OEF=OAF=45O,OFE=OAE=45O,OEF=OFE=45O, OE=OF, EOF=90O,点E在线段AC上,设E,=,= =当时, 取最小值,此时,赏析:试题尽可能从学生的心理承受力出发,在考查学生对数学核心概念、思想方法的理解和应用水平的过程中,使他们感受到数学的数学的魅力,体会到应用数学的价值。学生在解题过程中出现了多种解题思路,有的学生运用到课外知识,拓宽学生的思考空间,体现了试题的筛选优秀学生选拨功能,具有较好的数学教育价值。学生要正确解出此题,要迈过三道坎:第一道坎求该抛物线的函数关系式及点的坐标 ,起点较低,多数学生能迈过;第二道坎求点的坐标要分类讨论,从“以AB为直角边”条件中谨慎分析出A、B分别为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国白茶行业发展监测及投资战略规划研究报告
- 推拿治疗学新题库及答案详解【有一套】
- 2025年房屋拆除工程拆除物回收与处置合作协议
- 2025年度金融行业代理记账与风险评估合同范本
- 2025版移动互联网应用(App)开发与推广咨询合同
- 2025版塔吊工高空作业安全防护劳务合同范本
- 2025年度水利工程混凝土泵送施工总承包合同范本
- 2025年人社部六种劳动合同范本应用指南
- 2025版水利工程应急物资储备劳务承包合同范本
- 2025年度桥梁施工进度管理与监理合同
- YY/T 0196-2005一次性使用心电电极
- YS/T 226.12-2009硒化学分析方法第12部分:硒量的测定硫代硫酸钠容量法
- GB/T 24218.3-2010纺织品非织造布试验方法第3部分:断裂强力和断裂伸长率的测定(条样法)
- 系统工程原理 - 国防科技大学信息系统与管理学院
- 华为IPD流程管理全部课件
- 当代世界社会主义现状课件
- 2021年唐山迁安市教师进城考试笔试试题及答案解析
- 《给排水科学与工程概论》全套教学课件
- 三菱变频器d700说明书
- 涉外导游英语口语实训教程整套课件完整版PPT教学教程最全电子讲义教案(最新)
- 新疆新昊诚保温材料有限公司年产万吨岩棉生产线项目可
评论
0/150
提交评论