




免费预览已结束,剩余29页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1章 绪论1、环境监测概念:环境监测就是通过对影响环境质量因素的代表值的测定,来确定环境 质量(或污 染程度)及变化趋势。简单说:监视环境变化、测定变化量。2、环境监测的一般过程:现场调查监测计划设计优化布点样品采集运送保存 分 析测试 数据处理 综合评价 3、环境监测的分类(1)按监测目的分类 监视性监测(又称为例行监测或常规监测)包括环境质量监测(所在地区的空气、水质、噪声、固体废弃物等监督监测)和污染源监督监测(污染物浓度、排放总量、污染趋势等)特定目的监测(又称为特例监测)根据特定目的可分为四种:污染事故监测、纠纷仲裁监测、考核验证监测、咨询服务监测研究性监测(又称科研监测)包括标准方法样品监测、污染规律研究监测、背景调查监测、综合评价研究监测(2) 按监测介质分类大气污染监测、水质污染监测、土壤和固废监测、生物污染监测、生态监测、物理污染监测(噪声振动污染监测、放射性污染监测、电磁辐射监测、其它)4、 环境污染的特点:时间分布性、空间分布性、污染物的阈值、污染因素的综合效应、环境污染的社会评价综合性连续性追踪性对象复 杂手段多 样数据处理要综合考虑时间分布性空间分布性时 间分布性空 间分布性 人员区域 环境质量保证体系5、环境监测的特点 6、环境优先污染物和优先监测基本概念:对众多有毒污染物进行分级排队,从中筛选出潜在危害性大,在环境中出现频率高的污染物作为监测和控制对象。这一筛选过程为数学上的优先过程,经过优先选择的污染物称为环境优先污染物对优先污染物进行的监测称为优先监测。优先污染物的特点:毒性大、难降解、出现频率高、可生物积累、属三致物质、检测方法成熟7、 地表水环境质量标准(GB 38382002)标准适用于全国领域内江河、湖泊、运河、渠道、水库等具有使用功能的地表水域。具有特定功能的水域,执行相应的专业用水水质标准。其目的是保障人体健康、维护生态平衡、保护水资源、控制水污染,以及改善地面水质量和促进生产。8、污水综合排放标准(GB 89781996)适用于排放污水和废水的一切企、事业单位。污水排放标准是为了保证环境水体质量,对排放污水的一切企、事业单位所作的规定。可以是浓度控制,也可以是总量控制。9、 环境标准的分类和分级我国环境标准分为:环境质量标准、污染物排放标准、环境基础标准、环境方法标准、环境标准样品标准和环保仪器、设备标准等六类。环境标准分为国家标准和地方标准两级,其中环境基础标准、环境方法标准和标准物质标准等只有国家标准,并尽可能与国际标准接轨。补充:国家质量技术监督局标准: GB 国家强制标准 GB/T 国家推荐标准 GB/Z 国家指导性技术文件 国家环境保护标准: GHZB-国家环境质量标准 GWPB-国家污染物排放标准 GWKB-国家污染物控制标准 国家环保总局标准: HJ 国家环保总局标准 HJ/T 国家环保总局推荐标准; 第二章1、水体污染是指排入水体的污染物在数量上超过了该物质在水体中的本底含量和水体环境容量,从而导致了水体的物理特征和化学特征发生不良变化,破坏了水中固有的生态系统,从而降低了水体的使用价值,这种现象称为水体污染。2、水体自净污染物进入水体后首先被稀释,随后经过复杂的物理、化学和生物转化,使污染物浓度降低、性质发生变化,水体自然地恢复原样的过程称为自净。自净能力决定着水体的环境容量(洁净水体所能承载的最大污染物量)。3、水质监测的对象4、水质监测的目的1) 地表水及地下水经常性监测 ; 2)生产和生活过程监视性监测; 3)事故监测应急监测; 4)为环境管理提供数据和资料 ; 5)为环境科学研究提供数据和资料5、水质监测分析方法选择分析方法的原则:灵敏度和准确度能满足测定要求;方法成熟;抗干扰能力好;操作简便、易于普及。我国国家环境保护总局将现行方法分为三类:A类方法为国家或行业的标准方法;B类为统一分析方法;C类为试用方法(等效方法) (标准分析方法和统一分析方法均可在环境监测与执法中使用。)6、监测断面设置原则应在水质、水量发生变化及水体不同用途的功能区处设置监测断面1)有大量废水排入河流的居民区、工业区的上、下游;2)湖泊、水库、河口的主要入口和出口;3)饮用水源区、水资源集中的水域、主要风景游览区、水上娱乐及重大水力设施所在地;4)较大支流汇合口上游和汇合后与干流充分混合处;入海河流的河口处;受潮汐影响的河段和严重水土流失区;5)国际河流出入国境线的出入口处;6)尽可能与水文测量断面重合。7、监测断面的布设为评价完整江河水系的水质,需要设置背景断面、对照断面、控制断面和削减断面;对于某一河段,只需设置对照、控制和削减(或过境)三种断面。(1)背景断面:设在基本上未受人类活动影响的河段,用于评价一完整水系污染程度。(2)对照断面:为了解流入监测河段前的水体水质状况而设置。(3)控制断面:控制断面的数目应根据城市的工业布局和排污口分布情况而定,设在排污区(口)下游,污水与河水基本混匀处。(4)削减断面:是指河流受纳废水和污水后,经稀释扩散和自净作用,使污染物浓度显著降低的断面,通常设在城市或工业区最后一个排污口下游1500m以外的河段上。8、采样点位的确定1) 采样垂线的设置根据水面的宽度,在已设置的监测断面上确定采样垂线。确定采样垂线原则如下:2)采样位点的设置根据水的深度,在已确定采样垂线上设置具体的采样位点9、水样的类型(概念、应用)(1) 瞬时水样:是指在某一时间和地点从水体中随机采集的分散水样。(适用水质稳定,或组分在相当时间或空间范围内变化不大时。否则应隔时、多点采集瞬时样)(2) 混合水样:是指在同一采样点于不同时间所采集的瞬时水样混合后的水样有时称“时间混合水样”,以与其他混合水样相区别。(观察平均浓度时非常有用,不适用于被测组分在贮存过程中发生明显变化的水样)(3) 综合水样:把不同采样点同时采集的各个瞬时水样混合后所得到的样品称综合水样。(某些情况下更具有实际意义。如为废水河、渠建立综合处理厂,以此水样作为设计的依据更为合理)10、水样的保存1) 冷藏或冷冻法冷藏或冷冻能抑制微生物的活动,减缓物理作用和化学反应速度。如将水样保存在-18-22C的冷冻条件下,会显著提高水样中磷、氮、生化需氧量等监测项目的稳定性。冷藏:采样后将水样立即投入冰箱或冰水浴中并置于暗处,冷藏温度一般25度,该法不能长期保存水样。冷冻:冷冻温度为20,冷冻时不能将水样充满整个容器。2) 加入化学试剂保存法(P4849)作用:在水样中加入合适的保存试剂,能够抑制微生物活动,减缓氧化还原反应发生。加入方式:可以是在采样后立即加入;也可在水样分样时,根据需要分瓶分别加入。常用保存药剂:加入生物抑制剂;调节pH值;加入氧化剂;还原剂11、水样的消解1) 消解的目的是破坏有机物、溶解颗粒物,将各种价态的待测元素氧化成单一高价态或转换成易于分离的无机化合物。2) 湿式消解法湿式消解法是利用各种酸或碱进行消解。 硝酸消解法 适用水样:较清洁水样 硝酸高氯酸消解法适用水样:两种酸都是强氧化性酸,联合使用可消解含难氧化有机物的水样。注意:高氯酸能与羟基化合物反应生成不稳定的高氯酸酯,有发生爆炸的危险,故先加入硝酸,氧化水中的羟基化合物,稍冷后再加高氯酸处理。 如测镉、锌等金属含量时,水样的预处理即可选用此法。 硝酸硫酸消解法 两种酸都有较强的氧化能力,其中硝酸沸点低,而硫酸沸点高,二者结合使用,可提高消解温度和消解效果。常用的硝酸与硫酸的比例为52。不适用水样:易生成难溶硫酸盐组分(如铅、钡、锶)的水样。 注意:硫酸沸点高,可提高消解温度和消解效果。 硫酸磷酸消解法 两种酸的沸点都比较高,其中硫酸氧化性较强,磷酸能与一些金属离子如Fe3+等络合,故二者结合消解水样,有利于测定时消除Fe3+等离子的干扰。适用水样:含Fe3+等离子的水样注意:硫酸氧化性较强,磷酸能与Fe3+等金属离子络合,二者结合消解水样,有利于测定时消除Fe3+等离子的干扰。硫酸高锰酸钾消解法适用水样:消解测定汞的水样注意:过量的高锰酸钾用盐酸羟胺溶液除去。多元消解法 指三元以上酸或氧化剂组成的消解体系。如处理测定总铬的水样时,用硫酸、磷酸和高锰酸钾消解。 碱分解法 适用对象:待测组成在酸性条件下消解时易挥发时,可改用碱分解法。 即: NaOH+H2O2 或 NH3H2O+H2O23) 干灰化法干灰化法又称干式分解法或高温分解法。 消解过程:水浴蒸干(取适量水样于白瓷或石英蒸发皿)马福炉内450-550灼烧至残渣呈灰白色冷却用2% HNO3(或HCl)溶解样品灰分过滤滤液定容后供测定。不适用对象:处理测定易挥发组分(如砷、汞、镉、硒、锡等)的水样。 12、水样富集与分离(1) 挥发分离法挥发分离法是利用某些污染组分挥发度大,或者将欲测组分转变成易挥发物质,然后用惰性气体带出而达到分离的目的。如气提法和顶空法。因已知气态氢化物沸点很低,常将欲分离组分转化成氢化物。如砷、锡、 锑、硫等组分的分离 (气提法)。(2) 蒸发浓缩是指在电热板上或水浴中加热水样,使水分缓慢蒸发,达到缩小水样体积,浓缩欲测组分的目的。此法简单易行,无需化学处理,但速度慢,易吸附损失。 (3)蒸馏法蒸馏法是利用水样中各污染组分的具有不同的沸点而彼此分离的方法。 该法操作简便,在测定地表水,工业废水中酚类、氰化物、氟化物、硼化物等项目时都选用此法。 (4) 萃取法溶剂萃取法原理:物质在不同的溶剂相中分配系数不同,而达到组分的富集与分离。无机萃取体系类型:根据生成萃取物不同,可分为螯合物萃取体系、离子缔合物萃取体系、三元络合物萃取体系和协同萃取体系等。其中,螯合物萃取体系在环境监测中最常用。(螯合物萃取体系:是指在水相中加入螯合剂,与被测金属离子生成易溶于有机溶剂的中性螯合物,从而被有机相萃取出来。 金属螯合物的特性:难溶于水,易溶于有机溶剂。常用螯合剂:8-羟基喹啉类、双硫腙类、吡啶偶氮类化合物等。(与金属生成不带电的螯合物)有机物质的萃取原理:分散在水相中的有机物质易被有机溶剂萃取(相似相溶原理),利用此原理可以富集分散在水样中的有机污染物质。适用对象:多用于分子化合物(如挥发酚、油、有机农药)的萃取。 固相萃取法(SPE)固相萃取法的萃取剂是固体,其工作原理基于:水样中欲测组分与共存干扰组分在固相萃取剂上作用力强弱不同,使它们彼此分离。固相萃取剂是含C18或C8、腈基、氨基等基团的特殊填料。(5) 吸附法原理:吸附是利用多孔性的固体吸附剂将水样中一种或数种组分吸附于表面,以达到分离的目的。解吸方法:被吸附富集于吸附剂表面的污染组分,可用有机溶剂或加热解吸出来供测定。吸附剂类型:常用的吸附剂有活性炭、氧化铝、分子筛、大网状树脂等。(6) 离子交换法原理:离子交换是利用离子交换剂与溶液中的离子发生交换反应进行分离的方法。 操作程序:交换柱的制备 交换 洗脱离子交换剂:可分为无机离子交换剂和有机离子交换剂。目前广泛应用的是有机离子交换剂,即:离子交换树脂强酸性阳离子树脂:含有-SO3H、-SO3Na等活性基团。弱酸性阳离子树脂:含-COOH或-OH等活性基团。强碱性阴离子树脂:含有 -N(CH3)3+X-基团(季铵碱),其中X-为OH-、Cl-等。弱碱性阴离子树脂:含伯胺、仲胺基的为弱碱性阴离子交换树脂。在水处理中,最常用的是强酸性阳离子树脂和强碱性阴离子交换树脂。强酸性阳离子树脂一般用于富集金属阳离子。强碱性阴离子交换树脂,能在酸性、碱性和中性溶液中与强酸或弱酸阴离子交换,应用较广泛。(7) 共沉淀法概念:共沉淀是指溶液中一种难溶化合物在形成沉淀过程中,将共存的某些痕量组分一起载带沉淀出来的现象。共沉淀现象在常量分离和分析中是力图避免的,但却是一种分离富集微量组分的手段。例如,天然水体中镭的含量不高,测定前常用硫酸钡作为共沉淀剂,使镭从大体积水中分离并得到富集。原理:基于表面吸附、形成混晶、异电核胶态物质相互作用等。 13物理指标监测1) 颜色 天然水中的颜色主要是源于水体中的腐殖质、泥土、浮游生物等; 工业废水呈色主要是含有染料、生物色素、有色悬浮物等着色物质。类型:水的颜色可分为真色和表色两种。水的色度一般是指真色。 真色是指去除悬浮物后水的颜色;表色是没有去除悬浮物的水所具有的颜色。色度测定方法:铂钴比色法和稀释倍数法。铂钴比色法:方法要点:用氯铂酸钾与氯化钴(或重铬酸钾与硫酸钴)配成标准色列,再与水样进行目视 比色确定水样的色度。适用对象:适用于较清洁的、带有黄色色调的天然水和饮用水的测定。度量与单位:规定1升水中含1mg铂(以六氯铂酸形式)和0.5mg钴(即2mg的水合氯化钴) 所产生的颜色为1个色度单位(度)。注意事项:水要浑浊,应静置澄清,也可以离心或用滤膜过滤,但不能用滤纸过滤。稀释倍数法:测定要点:先用文字描述水样颜色的种类和深浅程度,如深蓝色、暗黑色等。然后在50mL 比色管中,用蒸馏水稀释到刚好看不到颜色,用稀释倍数表示该水样的色度,单 位是倍。适用对象:适用于工业废水和污染严重的地面水颜色的测定。特点:用量值表示,有国家标准,比颜色描述法优越。但受人的辨色力的差异和主观因素的 影响,往往会引起测定的差异,特别在低色度时。(4) 浊度(一)浊度是表现水中悬浮物对光线透过时所发生的阻碍程度。通常应用于天然水、 饮 用水浊度的测定。 (二)产生原因:是由水中存在如泥砂、胶体物、有机物、浮游生物、微生物等悬浮物质所造成。(三)影响因素:浊度的大小不仅与水体中的颗粒物有关,而且与其颗粒大小、形状和表面积有关。 (四)浊度测定方法 目视比浊法:将水样与用硅藻土配制的标准浊度溶液进行比较,以确定水样的浊度。分光光度法:将一定量的硫酸肼与6次甲基四胺聚合,生成白色高分子聚合物,以此 作为浊度标准溶液,在一定条件下与水样浊度比较。浊度计测定法:是依据浑浊液对光进行散射或透射的原理制成的专门测定浊度的仪器。目视比浊法 目视比浊法是根据水样混浊程度,取不同量标准浊度液配制标准系列, 然后将同体积水样(100mL比色管)与标准液进行目视比较,即得水样浊度。 规定:1mg一定粒度(过0.1mm筛)的硅藻土在1000mL水中产生的浊度为一度。 适用对象:适用于饮用水或水源水等低浊度的水,最低检测浊度为1度。 分光光度法 测定过程:w标准浊度液的配制:将一定量的硫酸肼与6次甲基四胺聚合,生成白色高分子聚合物,以此作为浊度标准溶液。w1cm比色皿,波长680nm处,测定标准浊度液吸光度值。绘制吸光度-浊度标准曲线,然后测定水样的吸光度值,并从标准曲线上查出相应的浊度。w当浊度超过100度时需稀释后测定,计算时应乘上相应的稀释倍数。 适用对象:高浊度的水,最低检测浊度为3度。 注意:硫酸肼有毒、致癌 浊度计测定法 浊度计是依据浑浊液对光进行散射或透射的原理制成的测定水体浊 度的专用仪器。 适用对象:一般用于水体浊度的连续自动测定。(5) 残渣 概念:水蒸发后,残余物质称为残渣,是表征水中溶解性物质、不溶性物质含量的指标。残渣的数量与蒸发温度有关,因为烘干时可因有机物的挥发、结晶水的变化及气体挥发等造成损失。一般烘干的温度为103105。残渣分为:(1)总残渣(Total Residue) 是指水和废水在一定的温度下蒸发、烘干后剩余的物质。包括总不可滤残渣和总可滤残渣。 总残渣测定方法:取适量振荡均匀的水样于称至恒重的蒸发皿中,在蒸汽浴或 水浴上蒸干,移入103-105烘箱内烘至恒重,增加的重量即为总残渣。单位 是mg/L。(2)总可滤残渣(也称溶解性固体Total soluble residue)是指将过滤后的水样放在称至恒重的蒸发皿内蒸干,再在一定温度下烘至恒重所增加的重量。测定过程及计算方法同总残渣。 总不可滤残渣(也称悬浮物,suspended substance即SS)测定意义:地表水悬浮物过多,使水体浑浊,透明度降低,影响水生生物呼吸和代 谢;工业废水和生活污水含大量悬浮物,易堵塞管道、污染环境,因此,为必测指标。 测定方法要点:取过滤后留在过滤器上的固体物质,于103-105烘至恒重得到的物 质量称为总不可滤残渣量。注意:报告结果要注明采用哪种滤器。一般使用的是孔径为0.45微米的滤膜。14金属化合物的测定1)种类:常量元素和微量元素:铁、锰、铜、锌等。 有毒有害金属元素:汞、镉、铬、铅、铜、镍、钡、钒、砷等。 受“三废”污染的地面水和工业废水中有害金属化合物的含量往往明显增加。 危害:有害金属侵入人的肌体后,将会使某些酶失去活性而出现不同程度的中毒症状。其 毒性大小与金属种类、理化性质、浓度及存在的价态和形态有关。 w元素的性质和浓度 自身性质决定其毒性强度,存在浓度生物效应关系。 w元素的存在形态 金属有机化合物毒性高于相应无机金属化合物。 w元素存在的价态 同一元素的价态不同,其毒性差别很大。(Cr6+/Cr3+) w元素化合物的水溶性及存在的形式 溶解性金属化合物易于被生物吸收利用,毒性增大2)测定方法金属存在不同形式,毒性大小不同,故可以分别测定可过滤金属,不可过滤金属和金属总量。可过滤态金属指通过0.45m 滤膜的部分;不可过滤态系指不能通过0.45m滤膜的部分;金属总量是不经过滤的水样消解后测得的金属含量。是可过滤金属与不可过滤金属之和。测定水体中金属元素常用的方法有分光光度法、原子吸收法、原子吸收光谱法 基本原理:w原子吸收分析就是利用处于基态的待测原子蒸气,对从光源发射出来的待测 元素的共振线的吸收而进行分析。 w各种元素的原子结构和外层电子排布不同,不同的元素的原子从基态跃迁至 第一激发态时,吸收的能量也不同,因而各种元素的共振线不同。 w也就是说各种不同的元素的共振线都具有不同的波长,所以元素的共振线又 称为元素的特征谱线。原子吸收分光光度计由光源、原子化系统、分光系统和检测系统四个主要部分组成。分子吸收光谱法-紫外可见分光光度法紫外及可见分光光度法是选定一定波长的光照射被测物质溶液,测量其吸光 度,再依据吸光度来计算被测组分的含量。 (1)定性依据 分子与原子一样,也有其特征分子能级,分子从外界吸收能量后,能 引起分子能级的跃迁,即从基态能级跃迁到激发态能级,这种跃迁所产生的吸收 光谱主要位于紫处及可见光区(波长在200-780纳米),这种分子光谱称为紫外及 可见光谱。 (2)定量理论依据 吸光度与被测组分的含量之间的关系依据于朗伯-比尔定律。 紫外可见分光光度计一般有光源、单色器、吸收池(比色皿) 、检测器及信号显示器组成。原子发射光谱分析法原理:定性分析依据:不同元素的原子由于其自身外层电子排布不同,在激发或电离时,发 射出不同波长的特征光谱。根据发射的特征光谱的波长进行定性分析。 定量分析依据:元素的含量不同,所发射的特征光的强弱也不同。据此进行定量分析。光谱的获得和光谱的分析两个过程原子荧光光谱法定性依据: 气态基态原子被具有特征波长的共振线光束照射后,此原子外层的电子吸收辐 射能,从基态或低能态跃迁到高能态,随后又返回基态或低能态,同时发射出与照射光(激发光)波长相同(共振荧光)或波长不同的光(非共振荧光),这种现象称为原子荧光。定量依据: 在一定的测量条件下,荧光强度与元素的浓度成正比。第2章汞的测定(详见书P70) 一、冷原子吸收法方法原理:汞原子蒸气对253.7nm的紫外光有选择性吸收。在一定浓度范围内,吸光度与汞浓度成正比,我国饮用水标准限值为0.001mgL。2、 冷原子荧光法该方法是将水样中的汞离子还原为基态汞原子蒸气,吸收253.7nm的紫外光后,被激发而产生特征共振荧光,在一定的测量条件下和较低的浓度范围内,荧光强度与汞浓度成正比,最低检出浓度为0.05mgL。与冷原子吸收测汞仪相比,不同之处在于是测定吸收池中的汞原子蒸气吸收特征紫外光后被激发后所发射的特征荧光(波长较紫外光长)强度。3、 双硫腙分光光度法 汞国家标准分析方法有:冷原子吸收分光光度法(GB 746887)水样经消解后,将各种形态汞转变成二价汞,再用氯化亚锡将二价汞还原为元素汞,用载气将产生的汞蒸气带入测汞仪的吸收池测定253.7nm处的吸光度,与汞标准吸光度进行比较定量。双硫腙分光光度法(GB 746987)Hg2+ +双硫腙橙色螯合物 485nm铬的测定(详见书上P83) 一、二苯碳酰二肼分光光度法 1六价铬的测定 在酸性介质中,六价铬与二苯碳酰二肼(DPC)反应,生成紫红色络合物,于540nm波长处进行比色测定。 2总铬的测定 在酸性溶液中,首先,将水样中的三价铬用高锰酸钾氧化成六价铬,过量的高锰酸钾用亚硝酸钠分解,过量的亚硝酸钠用尿素分解,然后,加入二苯碳酰二肼显色,于540nm处进行分光光度测定。其最低检测浓度同六价铬。 二、硫酸亚铁铵滴定法 本法适用于总铬浓度大于1mg/L的废水。其原理为在酸性介质中,以银盐作催化剂,用过硫酸铵将三价铬氧化成六价铬。加少量氯化钠并煮沸,除去过量的过硫酸铵和反应中产生的氯气。以苯基代邻氨基苯甲酸作指示剂,用硫酸亚铁铵标准溶液滴定,至溶液呈亮绿色。根据硫酸亚铁铵溶液的浓度和进行试剂空白校正后的用量,可计算出水样中总铬的含量。15.非金属无机物的测定1) 酸度测定(1)概念:水的酸度是指水释放出质子的能力。 量化:所有能与强碱发生反应的物质总量。 包括强酸、弱酸、强酸弱碱盐等。 (2)环境意义: 酸度是衡量水体水质的一项重要指 (3)来源:机械、印染、化工等行业排放的含酸废水。 (4)测定方法:甲基橙酸度(pH3.7)和酚酞酸度(pH8.3) 强酸酸度 总酸度 w酸碱指示剂滴定法: 原理:用甲基橙或酚酞为指示剂,用NaOH或Na2CO3标准溶液滴定至终点,根据所消耗碱标准液的用量计算水样的酸度,计算式如下: 酸度(CaCO3,mg/L)= (CV50.051000)/V水 式中:C NaOH或Na2CO3标准溶液的浓度(mol/L) V 消耗NaOH或Na2CO3标准溶液的体积(ml) V水 所取水样的体积(ml) 50.05 CaCO3的当量质量(g/mol)w电位滴定法:用玻璃电极为指示电极,甘汞电极为参比电极,用NaOH作滴定剂,pH计指示终点,据消耗碱标准溶液的量计算水样的酸度,计算式同上。电位滴定法不受水样有色、浑浊的影响,适用于各种水样酸度的测定。2)碱度测定:有作业题:P141,习题20(1)概念:水接受质子的能力。 量化:所有能与强酸发生作用的物质总量。 包括强碱、弱碱、强碱弱酸盐等。 地表水的碱度:碳酸盐、重碳酸盐及氢氧化物(2)来源:造纸、印染、电镀等行业废水,农药、化肥流失。(3)碱度测定的环境意义:评价水体的缓冲能力及金属在水体中的溶解性和毒性,是对水 和废水处理过程控制的判断性指标。(4)碱度的测定方法:酸碱指示剂滴定法和电位滴定法。各种形式碱度的存在状态与滴定结果之间的关系:TPM总碱度计算公式:总碱度(以CaCO3计,mg/L)= c(P + M) 50.05 1000 / V式中,C 酸标准液当量浓度(mol/L); (PM)所消耗酸标准液的量(ml); V 水样体积(ml); 50.05 CaCO3当量质量(g/mol)。对于OH、CO32、HCO3碱度含量的计算,可根据滴定结果的判断,并参考总碱度计算公式进行定量计算。 2) 溶解氧的测定(Dissolved Oxygen)1、 定义:溶解在水中的分子态氧称为溶解氧(DO)。二、环境意义:水体受到有机、无机还原物质污染时,溶解氧含量降低,厌氧细菌繁殖活跃,水质恶化,导致鱼虾死亡。一般规定水体中的溶解氧至少在4mgL以上。(3) 水样的采集和保存:水样中DO很不稳定,要在现场及时加入溶解氧固定化试剂(硫酸锰和碱性碘化钾),以避免在运输及保存过程中的损失。(单独采样)(4) 溶解氧的测定碘量法原理:水样中加入硫酸锰和碱性碘化钾,水中溶解氧将二价锰氧化成四价锰的棕色沉淀。加酸后,棕色沉淀溶解并与碘离子反应释放出游离碘,以淀粉为指示剂,用标准硫代硫酸钠溶液测定,通过计算得出溶解氧的含量。溶解氧的计算:DO(O2,mg/L)CV81000 / V水 式中:C Na2S2O3标液浓度(mol/L); V 消耗Na2S2O3标液的体积(ml); V水水样体积(ml); 8 O2的克当量(g/mol)。 修正碘量法(干扰与去除) w氧化性物质干扰的去除 水体中的NO2-、 Fe3等氧化性物质可使碘化钾游离出碘,产生正干扰。 排除NO2-:加叠氮化钠,就是仅将试剂碱性碘化钾溶液改为碱性碘化钾叠氮化钠溶液。 排除Fe3:加入40%的氟化钾掩蔽。(采集后、固定前加入)。w还原性物质干扰的去除高锰酸钾修正法:排除Fe2负干扰;加入0.63%高锰酸钾,将Fe2氧化成Fe3,再加入40%的氟化钾掩蔽。(采集后,固定前加入)。1ml0.63%高锰酸钾(紫色红)可氧化1mgFe2,过量的高锰酸钾用草酸钠去除(直至紫色红褪尽)明矾絮凝修正法:消除颜色、藻类及悬浮物等有机物的负干扰;(10%的硫酸铝钾)。膜电极法原理:根据分子氧透过薄膜的扩散速率来测定水中的溶解氧。 反应: 阴极:O2 + 2H20 + 4e = 4OH- 阳极:4Ag+ + 4CI- =4AgCI + 4e 外电路接通时,有扩散电流通过,大小与O2浓度、阴极面积、膜性质、厚度有关。 氰化物预处理 在酸性介质中蒸馏的方法预处理水样,把能形成氰化氢的氰化物蒸出,使之与干扰组分 分离。根据蒸馏介质酸度的不同,分为以下两种情况。 向水样中加入酒石酸和硝酸锌:调节pH值为4,加热蒸馏,则简单氰化物及部分络合氰化物如Zn(CN)42-以氰化氢形式被蒸馏出来,用氢氧化钠溶液吸收。取此蒸馏液测得的氰化物为易释放的氰化物。 向水样中加入磷酸和EDTA:在pH100d,而要把可降解的有机物全部分解掉需要 20d的时间。 长时间测定生化需氧量是不现实的。目前,国内外普遍规定在20温度条件下培养5天所消耗的溶解氧作为生化需氧量的数值,称为五日生化需氧量,用BOD5表示。 BOD5的测定方法:1.直接测定法适用对象:较清洁的水样(BOD5不超过7mg/L)可以用直接测定法测其BOD5。具体步骤:先调整水温至20左右,曝气使水中的溶解氧接近饱和(9mg/L)。将水样装满2个生化需氧量培养瓶(溶解氧瓶),测定其中1个瓶中水样的当日溶解氧,另一个瓶在201的培养箱中培养5天,5天后取出测定瓶中水样剩余的溶解氧。计算方法:当天溶解氧减去五天后溶解氧所得数值即为水样的BOD5。为减小误差,可多做几个平行样进行测定。2.稀释与接种法适用对象:大多数水样,尤其是废水样品的BOD5测定需采用稀释与接种法。操作目的:稀释的目的是降低废水中有机物的浓度,保证在五天培养过程中有充足的溶解氧。接种的目的是为水样提供足够的微生物。稀释与接种法基本步骤:稀释水的配制:曝气使溶解氧含量接近饱和;磷酸盐调节pH值为7.2;加入钙镁铁、氮磷钾等微量营养元素;不接种稀释水的BOD5不能超过0.2mg/L稀释倍数的确定:稀释的程度应使五天培养中所消耗的溶解氧大于2mg/L,而剩余溶解氧在1mg/L以上。在此前提条件下,稀释倍数可以估算,也可以依据经验值法来确定。(具体参见P115)稀释水的接种: 一般情况下,生活污水中有足够的微生物,不存在接种的问题。而工业废水,尤其是一些有毒工业废水,微生物含量甚微,需要接种才能测定。水样BOD5的计算:BOD5(mg/L) (C1-C2) (B1-B2)f1 / f2 C1 稀释水样在培养前的溶解氧浓度(mg/L); C2 稀释水样在培养后的溶解氧浓度(mg/L); B1 稀释水在培养前的溶解氧浓度(mg/L); B2 稀释水在培养后的溶解氧浓度(mg/L); f1 稀释水在培养液中所占比例; f2 水样在培养液中所占比例。3.其他BOD测定方法:测压法、活性污泥快速法、微生物电极法等。3)、总有机碳(TOC):总有机碳(TOC)是以碳的含量表示水中有机物质的总量,结果以碳(C)的mg/L表示。 (1)环境意义:碳是一切有机物的共同成份,组成有机物的主要元素,水的TOC值越高,说明水中有机物含量越高,因此,TOC可以作为评价水质有机污染的指标。(2)测定方法原理:测定TOC目前广泛应用的方法是燃烧氧化非分散红外吸收法。其测定原理:将一定量水样注入高温炉内的石英管,在900-950下,以铂和三氧化钴或三氧化二铬为催化剂,使有机物燃烧裂解转化为二氧化碳,然后用红外线气体分析仪测定CO2含量,从而确定水样中碳的含量。(此为总碳量,TC)要测TOC量,有两种方法:方法一:先将水样酸化,通入氮气曝气,驱除各种碳酸盐生成的CO2,然后再注入仪器内测定。方法二:把等量水样分别注入高温炉和低温炉,则水样中有机碳和无机碳均转化为CO2,依次导入非色散红外气体分析仪,分别测得总碳(TC)和无机碳(IC),二者之差即为TOC。4)、总需氧量(TOD):总需氧量(TOD)是指水中的还原性物质,主要是有机物质在燃烧中变成稳定的氧化物所需要的氧量,结果以O2的mg/L计。 (1)TOD环境意义: TOD是用燃烧法测定的,它能反映出几乎全部有机物质经燃烧后变成CO2、H2O、NO、P2O5和SO2时所需要的氧量,比BOD和COD都更接近理论需氧量的值。 (2)TOD分析仪的测定原理将少量水样与含一定量氧气的惰性气体(氮气)一起送入装有铂催化剂的高温燃烧管中(900),水样中的还原性物质在900温度下被瞬间燃烧氧化,测定惰性气体中氧气的浓度,根据氧的减少量求得水样的TOD值。有机物综合测指标比较COD、BOD、TOC和TOD等综合指标的不同之处仅在于氧化方式的不同。 氧化率是指实际测得的需氧量与理论需氧量的比值。4) CODCr与CODMn之间的比较 CODCr和CODMn 是采用两种不同的氧化剂在各自的氧化条件下测定的。CODCr在强氧 化剂重铬酸钾和146C反应温度等条件下反应,而CODMn则在氧化性相对较弱的高锰 酸钾和97C反应温度等条件下反应。 总体而言,CODCr氧化率可达90%、而CODMn的氧化率仅为50%,两者均未达到完全氧 化。根据氧化率比较可得到CODCr CODMn。 (二)CODCr、CODMn、BOD之间的比较 CODCr、CODMn和BOD都是利用定量的数值来间接、相对地表示水中有机物质的总量。CODCr和CODMn是利用化学强氧化剂氧化水中的有机物,BOD5则是利用微生物氧化水中有机物。对同一种废水而言,一般有:CODCr BOD5 CODMn 。它们之间的具体比值因水质不同而异。项目BOD5CODCrCODMn定义在有氧的条件下,可分解有机物被微生物氧化分解所需的氧量在一定条件下,有机物被 K2Cr2O7 氧化所需的氧量在一定条件下,有机物被KMnO4氧化所需的氧量氧化动力微生物的生物氧化作用强氧化剂的化学氧化作用氧源水中的溶解氧(分子态氧)强氧化剂中的化合态氧反应温度20C146C97C测定所需时间5 天3 小时(半天)1 小时被测定有机物的范围 不含氮有机物 含氮有机物中的碳素部分不含氮有机物 含氮有机物(但芳 香烃和杂环类除外) 一部分不含氮有机物适用范围河湖水、生活污水、一般工业废水河湖水、生活污水、工业废水较清洁的水(3) TOC与TOD之间的比较TOC与TOD都是利用燃烧法来测定水中有机物的含量。所不同的是,TOC是以碳的含量表示,TOD是以还原性物质所消耗氧的数量表示,且TOC所反映的只是含碳有机物,而TOD反映的是几乎全部有机物质。(4) TOC、TOD与COD、BOD5之间的比较由于测定TOC和TOD所采用的是燃烧法,能将有机物几乎全部氧化,比COD和BOD5测定时有机物氧化得更为彻底,因此,TOC和TOD更能直接表示水中有机物质的总量。 对大多数同种废水来讲,TOC、TOD和COD、BOD5之间都存在一定的相关关系,如果通过实验取得它们之间的具体比值,就可以利用简便、易测的TOC和TOD数据去推算COD、BOD5的数值。第三章 空气和废气监测1、空气污染的来源
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年城市供用热力合同(GF-1999-0503)升级协议书
- 教育楼捐赠项目合同协议书范本
- 地产项目融资模式探讨
- 人力资源行政招聘协调主管
- 如何处理人际关系问题的心理咨询方案
- 云端数据备份技术规范
- 大型活动承办合同协议书范本2024
- 在职场中如何保持与时俱进的态度
- 审计报告合格标准细则
- 地方性视角下延吉市民俗旅游开发:基于朝鲜族文化的深度剖析与策略构建
- 安徽省专升本英语词汇表词汇表
- 争创文明班级班会课件
- 青梅种植管理技术
- 美术作品与客观世界 课件-2024-2025学年高中美术湘美版(2019)美术鉴赏
- 施工升降机维护保养协议8篇
- GB/T 17554.1-2025卡及身份识别安全设备测试方法第1部分:一般特性
- 深基坑工程监理实施细则
- 2025年田径三级裁判试题及答案
- 2019泰和安TX6930手持设备安装使用说明书
- 《新能源汽车概论》课件
- 驻外代表处管理制度
评论
0/150
提交评论