1.6 逻辑联结词(2)_第1页
1.6 逻辑联结词(2)_第2页
1.6 逻辑联结词(2)_第3页
1.6 逻辑联结词(2)_第4页
1.6 逻辑联结词(2)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档2016全新精品资料全新公文范文全程指导写作独家原创1/816逻辑联结词(2)课题16逻辑联结词(2)教学目的1加深对“或”“且”“非”的含义的理解;2能利用真值表,判断含有复合命题的真假;3培养抽象逻辑思维能力,培养归纳推理的思维能力教学重点判断复合命题真假的方法教学难点对“P或Q”复合命题真假判断的方法授课类型新授课课时安排1课时教具多媒体、实物投影仪内容分析这一节的重点是逻辑联结词“或”、“且”、“非”学习简易逻辑知识,主要是为了培养学生进行简单推理的技能,发展学生的思维能力,在这方面,逻辑联结词“或”、“且”、“非”与充要条件的有关内容是十分必要的这一节的难点是对一些代数命题真假的判断初中阶段,学生只是对简单的推理方法有一定程度的熟悉,并且,相关的技能和能力,主要还是通过几何课的学习获得的,初中代数侧重的是运算的技能和能力,因此,像对代数命题的证明,学生还需要有一个逐步熟悉的过程教学过程精品文档2016全新精品资料全新公文范文全程指导写作独家原创2/8一、复习引入1什么叫做命题(可以判断真假的语句叫命题正确的叫真命题,错误的叫假命题)2逻辑联结词是什么(“或”的符号是“”、“且”的符号是“”、“非”的符号是“”,这些词叫做逻辑联结词)含义是“P或Q”是指P,Q中的任何一个或两者例如,“XA或XB”,是指X可能属于A但不属于B(这里的“但”等价于“且”),X也可能不属于A但属于B,X还可能既属于A又属于B(即XAB);又如在“P真或Q真”中,可能只有P真,也可能只有Q真,还可能P,Q都为真“P且Q”是指P,Q中的两者例如,“XA且XB”,是指X属于A,同时X也属于B(即XAB)“非P”是指P的否定,即不是P例如,P是“XA”,则“非P”表示X不是集合A的元素(即X)3什么叫做简单命题和复合命题(不含有逻辑联结词的命题是简单命题由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题)4复合命题的构成形式是什么P或Q记作“PQ”;P且Q记作“PQ”;非P记作“Q”二、讲解新课精品文档2016全新精品资料全新公文范文全程指导写作独家原创3/8判断复合命题真假的方法1“非P”形式的复合命题例11如果P表示“2是10的约数”,试判断非P的真假2如果P表示“32”,那么非P表示什么并判断其真假解1中P表示的复合命题为真,而非P“2不是10的约数”为假2中P表示的命题“32”为假,非P表示的命题为“32”,其显然为真小结非P复合命题判断真假的方法当P为真时,非P为假;当P为假时,非P为真,即“非P”形式的复合命题的真假与P的真假相反,可用下表表示P非P真假假真2“P且Q”形式的复合命题例2如果P表示“5是10的约数”,Q表示“5是15的约数”,R表示“5是8的约数”,试写出且,且的复合命题,并判断其真假,然后归纳出其规律解P且Q即“5是10的约数且是15的约数”为真(P、Q为真);P且R即“5是10的约数且是8的约数”为假(R为假)精品文档2016全新精品资料全新公文范文全程指导写作独家原创4/8小结“P且Q”形式的复合命题真假判断当P、Q为真时,P且Q为真;当P、Q中至少有一个为假时,P且Q为假可用下表表示PQP且Q真真真真假假假真假假假假3“P或Q”形式的复合命题例3如果P表示“5是12的约数”Q表示“5是15的约数”,R表示“5是8的约数”,写出,P或R,Q或S,P或Q的复合命题,并判断其真假,归纳其规律P或Q即“5是12的约数或是15的约数”为真(P为假、Q为真);P或R即“5是12的约数或是8的约数”为假(P、R为假)小结“P或Q”形式的复合命题真假判断当P,Q中至少有一个为真时,“P或Q”为真;当P,Q都为假时,“P或Q”为假即“P或Q”形式的复合命题,当P与Q同为假时为假,其他情况时为真可用下表表示PQP或Q真真真精品文档2016全新精品资料全新公文范文全程指导写作独家原创5/8真假真假真真假假假像上面三个表用来表示命题的真假的表叫做真值表在真值表中,是根据简单命题的真假,判断由这些简单命题构成的复合命题的真假,而不涉及简单命题的具体内容例4(课本第28页例2)分别指出由下列各组命题构成的“P或Q”,“P且Q”,“非P”形式的复合命题的真假P225,Q32;P9是质数,Q8是12的约数;P11,2,Q11,2;P0,Q0解P或Q225或32;P且Q225且32;非P225P假Q真,“P或Q”为真,“P且Q”为假,“非P”为真P或Q9是质数或8是12的约数;P且Q9是质数且8是12的约数;非P9不是质数P假Q假,“P或Q”为假,“P且Q”为假,“非P”为真P或Q11,2或11,2;P且Q11,2且11,2;非P11,2精品文档2016全新精品资料全新公文范文全程指导写作独家原创6/8P真Q真,“P或Q”为真,“P且Q”为真,“非P”为假P或Q0或0;P且Q0且0;非P0P真Q假,“P或Q”为真,“P且Q”为假,“非P”为假4逻辑符号“或”的符号是“”,“且”的符号是“”,“非”的符号是“”例如,“P或Q”可记作“PQ”;“P且Q”可记作“PQ”;“非P”可记作“P”注意数学中的“或”与日常生活用语中的“或”的区别“或”这个逻辑联结词的用法,一般有两种解释一是“不可兼有”,即“A或B”是指A,B中的某一个,但不是两者日常生活中有时采用这一解释例如“你去或我去”,人们在理解上不会认为有你我都去这种可能二是“可兼有”,即“A或B”是指A,B中的任何一个或两者例如“XA或XB”,是指X可能属于A但不属于B(这里的“但”等价于“且”),X也可能不属于A但属于B,X还可能既属于A又属于B(即XAB);又如在“P真或Q真”中,可能只有P真,也可能只有Q真,还可能P,Q都为真精品文档2016全新精品资料全新公文范文全程指导写作独家原创7/8数学书中一般采用这种解释,运用数学语言和解数学题时,都要遵守这一点还要注意“可兼有”并不意味“一定兼有”另外,“苹果是长在树上或长在地里”这一命题,按真值表判断,它是真命题,但在日常生活中,我们认为这句话是不妥的5学习逻辑的意义一方面是因为数学基础需要用逻辑来阐明,另一方面是因为计算机离不开数学逻辑,课本中介绍的洗衣机上的“或门电路”和电子保险门上的“与门电路”就是两个在这方面应用的实例可以说计算机的“智能”装置是以数学逻辑为基础进行设计的同学们可以结合日常生活中电器的自动控制功能,再找出一些这样的例子电路或门电路(或)与门电路(且)三、小结用真值表法判断复合命题真假的方法四、练习课本第28练习1,2答案1真;真;假2P或Q42,3或22,3;P且Q42,3且22,3;非P42,3精品文档20

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论