统计计算题.doc_第1页
统计计算题.doc_第2页
统计计算题.doc_第3页
统计计算题.doc_第4页
统计计算题.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

4.10 通过标准分数来判断,各天的标准分数如下表:日期周一周二周三周四周五周六周日标准分数Z3-0.6-0.20.4-1.8-2.20周一和周六两天失去了控制。4.11(1)应该采用离散系数,因为它消除了不同组数据水平高低的影响。(2)成年组身高的离散系数:; 幼儿组身高的离散系数:;由于幼儿组身高的离散系数大于成年组身高的离散系数,说明幼儿组身高的离散程度相对较大。411(1)应该从平均数和标准差两个方面进行评价。在对各种方法的离散程度进行比较时,应该采用离散系数。(2)下表给出了用Excel计算一些主要描述统计量。方法A方法B方法C平均165.6平均128.73平均125.53中位数165中位数129中位数126众数164众数128众数126标准差2.13标准差1.75标准差2.77极差8极差7极差12最小值162最小值125最小值116最大值170最大值132最大值128从三种方法的集中趋势来看,方法A的平均产量最高,中位数和众数也都高于其他两种方法。从离散程度来看,三种方法的离散系数分别为:,。方法A的离散程度最小。因此应选择方法A。517 一工厂生产的电子管寿命X(以小时计算)服从期望值为=160正态分布,若要求p120X2000.08,允许标准差最大为多少? ((0.11)0.54 ) 解: p120X200=(40/)- (-40/)=2(40/)-1=0.08则(40/)=0.54 40/=0.11 所以=363即允许标准差最大为363.518 一本书排版后一校时出现错误处数X服从正态分布N(200,400),求:((0.5)=0.69145 (1.5)=0.9332)(1)出现错误处数不超过230的概率;(2)出现错误处数在190210之间的概率。解: (1)(2)6.1 调节一个装瓶机使其对每个瓶子的灌装量均值为盎司,通过观察这台装瓶机对每个瓶子的灌装量服从标准差盎司的正态分布。随机抽取由这台机器灌装的9个瓶子形成一个样本,并测定每个瓶子的灌装量。试确定样本均值偏离总体均值不超过0.3盎司的概率。解:总体方差知道的情况下,均值的抽样分布服从的正态分布,由正态分布,标准化得到标准正态分布:z=,因此,样本均值不超过总体均值的概率P为:=2-1,查标准正态分布表得=0.8159因此,=0.63187.9 某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离(单位:km)分别是: 10 3 14 8 6 9 12 11 7 5 10 15 9 16 13 2假定总体服从正态分布,求职工上班从家里到单位平均距离的95的置信区间。解:小样本,总体方差未知,用t统计量均值=9.375,样本标准差s=4.11置信区间:=0.95,n=16,=2.13=(7.18,11.57)7.19根据下面的样本结果,计算总体标准差的90%的置信区间:1)=21,S=2,N=502)=1.3,S=0.02,N=153)=167,S=31,N=22解:1)大样本,未知,置信水平90%,1-a90%,1.65 211.65250 2)小样本,未知,置信水平90%,1-a90%,则查自由度为n-1 = 14的 分布表得临界值 1.761 , = 1.31.7610.0215 3) 大样本, 未知,置信水平90%,1-a90%,1.65 1671.6531227.218.6某厂家在广告中声称,该厂生产的汽车轮胎在正常行驶条件下超过目前的平均水平25000公里。对一个由15个轮胎组成的随机样本做了试验,得到样本均值和标准差分别为27000公里和5000公里。假定轮胎寿命服从正态分布,问该厂家的广告是否真实(a=0.05)?解:N=15, =27000,s=5000,小样本正态分布,未知,用t统计量计算。这里是右侧检验,a=0.05,自由度N-1=14,即ta=1.77H0:0 25000H1: 250000-=nsxt = (27000-25000)/(500015)1.55 结论:因为t值落入接受域,所以接受H0 ,拒绝H1。 决策:有证据表明,该厂家生产的轮胎在正常行驶条件下使用寿命与目前平均水平25000公里无显著性差异,该厂家广告不真实。87 某种电子元件的寿命x(单位:小时)服从正态分布。现测得16只元件的寿命如下: 159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170 问是否有理由认为元件的平均寿命显著地大于225小时(a005)?解:H0:225;H1:225经计算知:241.5 s98.726检验统计量:0.669当0.05,自由度n115时,查表得1.753。因为t,样本统计量落在接受区域,故接受原假设,拒绝备择假设,说明元件寿命没有显著大于225小时。810 装配一个部件时可以采用不同的方法,所关心的问题是哪一个方法的效率更高。劳动效率可以用平均装配时间反映。现从不同的装配方法中各抽取12件产品,记录各自的装配时间(单位:分钟)如下: 甲方法:31 34 29 32 35 38 34 30 29 32 31 26 乙方法:26 24 28 29 30 29 32 26 31 29 32 28两总体为正态总体,且方差相同。问两种方法的装配时间有无显著不同 (a005)?解:建立假设H0:12=0 H1:120总体正态,小样本抽样,方差未知,方差相等,检验统计量 根据样本数据计算,得12,=12,31.75,3.19446,28.6667,=2.46183。 8.13262.6480.05时,临界点为2.074,此题中,故拒绝原假设,认为两种方法的装配时间有显著差异。811 调查了339名50岁以上的人,其中205名吸烟者中有43个患慢性气管炎,在134名不吸烟者中有13人患慢性气管炎。调查数据能否支持“吸烟者容易患慢性气管炎”这种观点(a005)?解:建立假设H0:12;H1:12p143/205=0.2097 n1=205 p213/134=0.097 n2=134检验统计量 3当0.05,查表得1.645。因为,拒绝原假设,说明吸烟者容易患慢性气管炎。10.111.1、从某一行业中随机抽取12家企业,所得产量与生产费用的数据如下:企业编号产量(台)生产费用(万元)企业编号产量(台)生产费用(万元) 1 2 3 4 5 6 40 42 50 55 65 78 130 150 155 140 150 154 7 8 9 10 11 1284 100 116 125 130 140 165 170 167 180 175 185(1)绘制产量与生产费用的散点图,判断二者之间的关系形态。(2)计算产量与生产费用之间的线性相关系数。(3)对相关系数的显著性进行检验(=005),并说明二者之间的关系密切程度。解:图略经计算得: n=12 线性相关系数=0.9202 构造检验统计量:取=0.05,查表得拒绝原假设,说明生产费用与产量之间线性相关关系显著.11.2学生在期末考试之前用于复习的时间(单位:h)和考试分数(单位:分)之间是否有关系?为研究这一问题,一位研究者抽取了8名学生构成的一个随机样本,得到的数据如下:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论