




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课 题2.1. 数怎么又不够用了(一)课型新授 课时2教学目标(一)教学知识点1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出理由.(二)能力训练要求1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.(三)情感与价值观要求1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的献身精神.教学重点1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数.教学难点1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.判断一个数是否为有理数.教学方法探究-发现-总结-运用教师活动学生活动.创设问题情境,引入新课:同学们,我们上了好多年的学,学过不计其数的数,概括起来我们都学过哪些数呢?答:在小学我们学过自然数、小数、分数.答:在初一我们还学过负数.我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.讲授新课1.问题的提出请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?2.做一做: (1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b,则b应满足什么条件?(3)b是有理数吗?请大家先回忆一下勾股定理的内容.答:在直角三角形中,若两条直角边长为a,b,斜边为c,则有a2+b2=c2.在这个题中,两条直角边分别为1和2,斜边为b,根据勾股定理得b2=12+22,即b2=5,则b是有理数吗?请举手回答.答1:因为22=4,32=9,459,所以b不可能是整数.答2:没有两个相同的分数相乘得5,故b不可能是分数.答3:因为没有一个整数或分数的平方为5,所以5不是有理数.大家分析得很准确,像上面讨论的数a,b都不是有理数,而是另一类数无理数.关于无理数的发现是发现者付出了昂贵的代价的.早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来古希腊人终于正视了希伯索斯的发现.也就是我们前面谈过的a2=2中的a不是有理数.我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神.课时小结1.通过拼图活动,让学生感受有理数又不够用了,经历无理数产生的实际背景和引入的必要性.2.能判断一个数是否为有理数.课后作业课本P49习题2.1解:设长、宽分别为3、2的长方形的对角线长为a,得a2=32+22,a2=13a不可能是整数,也不可能是分数.活动与探究下图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的若干个顶点,可得到一些线段,试分别找出两条长度是有理数的线段和三条长度不是有理数的线段.解:如图,AB=2,BE=1,AB、BE是有理数.AD2=AB2+BD2=22+32=13,AC2112.AE2=AB2+BE2=22+12=5.AC、AD、AE既不是整数,也不是分数,所以不是有理数.经过大家的共同努力,每个小组都完成了任务,请同学们把自己拼的图展示一下.现在我们一齐把大家的做法总结一下:下面再请大家共同思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?答1:a是正方形的边长,所以a肯定是正数.;因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a2=2;由a2=2可判断a应是1点几.大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a是整数吗?a是分数吗?请大家分组讨论后回答.答2:我们组的结论是:因为12=1,22=4,32=9,整数的平方越来越大,所以a应在1和2之间,故a不可能是整数.答3:因为,两个相同因数的乘积都为分数,所以a不可能是分数.经过大家的讨论可知,在等式a2=2中,a既不是整数,也不是分数,所以a不是有理数,但在现实生活中确实存在像a这样的数,由此看来,数又不够用了.课堂练习(一)课本P33随堂练习如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?解:由正三角形的性质可知BD=1,在RtABD中,由勾股定理得h2=3.h不可能是整数,也不可能是分数.板书设计2.1.1 数怎么又不够用了(一)一、问题的提出(讨论a2=2中的a既不是整数,也不是分数) 三、练习二、做一做(由勾股定理得b2=5,且b既不是整数,也不是分数) 四、小结五、作业教学反思课 题2.1、数怎么又不够用了(二)课型新授 课时2教学目标(一)教学知识点1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.2.会判断一个数是有理数还是无理数.(二)能力训练要求1.借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考、合作交流的意识和能力.2.探索无理数的定义,以及无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练大家的思维判断能力.(三)情感与价值观要求1.让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力.2.充分调动学生的积极性,培养他们的合作精神,提高他们的辨识能力.教学重点1.无理数概念的探索过程.2.用计算器进行无理数的估算.3.了解无理数与有理数的区别,并能正确地进行判断.教学难点1.无理数概念的建立及估算.2.用所学定义正确判断所给数的属性.教学方法探究-发现-总结-运用教 学 内 容 及 过 程备注.创设问题情境,引入新课同学们,我们在上节课了解到有理数又不够用了,并且我们还发现了一些数,如a2=2,b2=5中的a,b既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来揭示它的真面目.讲授新课3.有理数与无理数的主要区别(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.(2)任何一个有理数都可以化为分数的形式,而无理数则不能.4.例题讲解下列各数中,哪些是有理数?哪些是无理数?3.14,0.1010010001(相邻两个1之间0的个数逐次加1).课堂练习(一)随堂练习下列各数中,哪些是有理数?哪些是无理数?0.4583,18.(二)补充练习:、判断题(1)有理数与无理数的差都是有理数.(2)无限小数都是无理数.(3)无理数都是无限小数.(4)两个无理数的和不一定是无理数.、下列各数中,哪些是有理数?哪些是无理数?0.351,3.14159,5.2323332,123456789101112(由相继的正整数组成).在下列每一个圈里,至少填入三个适当的数.课时小结本节课我们学习了以下内容.1.用计算器进行无理数的估算.2.无理数的定义.3.判断一个数是无理数或有理数.课后作业:1.P37习题2.2.探究与活动设面积为5的圆的半径为a.(1)a是有理数吗?说说你的理由.(2)估计a的值(精确到十分位,并利用计算器验证你的估计).(3)如果精确到百分位呢?解:a2=5 a2=5(1)a不是有理数,因为a既不是整数,也不是分数,而是无限不循环小数.(2)估计a2.2.(3)a2.24.板书设计:上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.像上面研究过的a2=2,b2=5中的a,b是无限不循环小数.无限不循环小数叫无理数(irrational number).除上面的a,b外,圆周率=3.14159265也是一个无限不循环小数,0.5858858885(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数.1、数怎么又不够用了(二)一、导入二、新课1.无理数的定义2.举例三、练习四、补充练习五、课时小节六、课后作业1.导入请看图大家判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由.答:因为3个正方形的面积分别为1,2,4,而面积又等于边长的平方,所以面积大的正方形边长就大.大家能不能判断一下面积为2的正方形的边长a的大致范围呢?答:因为a2大于1且a2小于4,所以a大致为1点几.很好.a肯定比1大而比2小,可以表示为1a2.那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如1.12=1.21,1.22=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4a1.5,所以a是1点4几,即十分位上是4,请大家用同样的方法确定百分位、千分位上的数字.请一位同学把自己的探索过程整理一下,用表格的形式反映出来.答:我的探索过程如下.边长a面积S1a21S41.4a1.51.96S2.251.41a1.421.9881S2.01641.414a1.4151.999396S2.0022251.4142a1.41431.99996164S2.00024449还可以继续下去吗?答:可以.请大家继续探索,并判断a是有限小数吗?答:a=1.41421356,还可以再继续进行,且a是一个无限不循环小数.请大家用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答.(约4分钟)答:b=2.236067978,还可以再继续进行,b也是一个无限不循环小数.2.无理数的定义请大家把下列各数表示成小数.3,并看它们是有限小数还是无限小数,是循环小数还是不循环小数.大家可以每个小组计算一个数,这样可以节省时间.答:3=3.0,=0.8,=,答:3,是有限小数,是无限循环小数.课 题2.2 平方根(一)课型新授 课时2教学目标(一)教学知识点1.了解数的算术平方根的概念,会用根号表示一个数的算术平方根.2.了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根.3.了解算术平方根的性质.(二)能力训练要求1.加强概念形成过程的教学,提高学生的思维水平.2.鼓励学生进行探索和交流,培养他们的创新意识和合作精神.(三)情感与价值观要求1.让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.2.训练学生动脑、动口、动手能力教学重点了解算术平方根的概念、性质,会用根号表示一个正数的算术平方根教学难点了解算术平方根的概念、性质.教学方法探究-发现-总结-运用教师活动学生活动.新课导入上节课我们学习了无理数、了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如在a2=2中,2是有理数,而a是无理数.在前面我们学过若x2=a,则a叫x的平方,反过来x叫a的什么呢?本节课我们就来一起研究这个问题.讲授新课若一个正数x的平方等于a,即x2=a,则这个正数x就叫做a的算术平方根.记为“”读作“根号a”.这就是算术平方根的定义.特别地规定0的算术平方根是0,即=0.下面我们根据算术平方根的定义求一些数的算术平方根.例1求下列各数的算术平方根:(1)900;(2)1;(3);(4)14. 解:(1)因为302=900,所以900的算术平方根是30,即=30;(2)因为12=1,所以1的算术平方根是1,即=1;(3)因为所以的算术平方根是,即;(4)14的算术平方根是.通过上面的例题,大家思考一下,我们在求算术平方根时是借助于哪一种运算来求的?答:是通过平方来求的.对.由此我们可以看出一个正数的平方和求算术平方根是互为逆运算.而且我们在例题中的步骤采取语言叙述和符号表示互相补充的做法,目的是让大家明白算术平方根的概念,以及从计算中进一步体会一个正数的平方和求算术平方根是互为逆运算.在以后的步骤中可以简化.例2自由下落的物体的高度h(米)与下落时间t(秒)的关系为h=4.9t2.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?解:将h=19.6代入公式h=4.9t2得t2=4,所以t=2(秒)即铁球到达地面需要2秒.下面大家再观察一下刚才咱们求出的算术平方根有什么特点.定义中的a和x都为正数,即算术平方根是非负数,负数没有算术平方根.用式子表示为(a0)为非负数,这是算术平方根的性质.二、求下列各数的算术平方根,并用符号表示出来:(1)(7.4)2;(2)(3.9)2;(3)2.25;(4)2.课时小结本节课学习了算术平方根的概念,理解了求一个正数的平方和求算术平方根是互为逆运算,求一个非零数的算术平方根,以及算术平方根的性质,即算术平方根是非负数.课后作业P40习题2.3.活动与探究1.一个正方形的面积变为原来的n倍时,它的边长变为原来的多少倍?2.一个正方形的面积为原来的100倍时,它的边长变为原来的多少倍?解:设原来的正方形边长为a,面积为S1,后来的正方形面积为S2.1.S1=a2,S2=na2(a)2后来的边长(a)为原来边长的倍.2.S1=a2,S2=100a2=(10a)2后来的边长10a为原来边长的10倍.板书设计:一、算术平方根的定义算术平方根的性质二、举例三、练习四、作业在讲新课之前,我们先回忆一下勾股定理,请同学们回答.答:勾股定理就是在直角三角形中两条直角边的平方和等于斜边的平方.下面请大家根据勾股定量,结合图形完成填空. 根据下图填空x2=_y2=_z2=_w2=_请大家思考后回答.答:x2=2,y2=3,z2=4,w2=5.请大家再分析一下,x,y,z,w中哪些是有理数?哪些是无理数?答:x,y,w是无理数,z是有理数.为什么呢?答:因为没有任何整数或分数的平方等于2,3,5,所以x,y,z不是有理数,而22=4,所以z=2.这位同学分析得非常正确,那么大家能不能把上图中的x,y,z,w表示出来呢?请大家仔细看书后回答.答:x=,y=,z=,w=.课堂练习(一)P39随堂练习1、2题.(二)补充练习. 一、填空题1.若一个数的算术平方根是,则这个数是_.2.的算术平方根是_.3.正数_的平方为的算术平方根为_.4.(1.44)2的算术平方根为_.5.的算术平方根为_,=_教学反思课 题2.2 平方根(二)课型新授 课时2教学目标(一)教学知识点1.了解平方根的概念、开平方的概念.2.明确算术平方根与平方根的区别与联系.3.进一步明确平方与开方是互为逆运算.(二)能力训练要求1.加强概念形成过程的教学,让学生不仅掌握概念,而且知晓它的理论数据.2.提倡学生进行自学,并能与同学互相交流与合作,变学会知识为会学知识.3.培养学生的求同和求异思维,能从相似的事物中观察到PX 们的共同点和不同点.(三)情感与价值观要求通过学生在学习中互相帮助、相互合作,并能对不同概念进行区分,培养大家的团队精神,以及认真仔细的学习态度,为学生将来走上社会而做准备,使他们能在工作中保持严谨的态度,正确处理好人际关系,成为各方面的佼佼者.教学重点1.了解平方根、开平方的概念.2.了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.3.了解平方根与算术平方根的区别与联系.教学难点1.平方根与算术平方根的区别与联系.2.负数没有平方根,即负数不能进行开平方运算的原因.教学方法讨论比较法.即主要靠大家讨论得出结论,同时对相似的概念进行比较.这样不仅能正确区分这些概念,还能使学生学得更扎实.教师活动学生活动.创设问题情境,引入新课上节课我们学习了算术平方根的概念,性质.知道若一个正数x的平方等于a,即x2=a.则x叫a的算术平方根,记作x=,而且也是非负数,比如正数22=4,则2叫4的算术平方根,4叫2的平方,但是(2)2=4,则2叫4的什么根呢?下面我们就来讨论这个问题.讲授新课由平方根和算术平方根的定义,大家能否找出它们有什么相同和不同之处呢?请分小组讨论后选代表回答.答:平方根的定义中是有一个数x的平方等于a,则x叫a的平方根,x没有肯定是正数还是负数或零;而算术平方根的定义中是有一个正数x的平方等于a,则x叫a的算术平方根,这里的x只能是正数.由此看来都有x2=a,这是它们的相同之处,而x的要求不同,这是它们的不同之处.这位同学分析判断能力特棒,下面我再详细作一总结. 平方根与算术平方根的联系与区别联系:(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种.(2)存在条件相同:平方根和算术平方根都是只有非负数才有. (3)0的平方根,算术平方根都是0.区别:(1)定义不同:“如果一个数的平方等于a,这个数就叫做a的平方根”;“非负数a的非负平方根叫a的算术平方根”.(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个.(3)表示法不同:正数a的平方根表示为,正数a的算术平方根表示为.(4)取值范围不同:正数的平方根一正一负,互为相反数;正数的算术平方根只有一个.什么叫开平方呢?答:求一个数a的平方根的运算,叫开平方(extraction of square root),其中a叫被开方数.我们共学了几种运算呢,这几种运算之间有怎样的联系呢?请大家讨论后回答.答:我们共学了加、减、乘、除、乘方、开方六种运算.加与减互为逆运算,乘与除互为逆运算,乘方与开方互为逆运算.2.平方根的性质请大家思考以下问题.(1)一个正数有几个平方根.(2)0有几个平方根?(3)负数呢?答:第一个问题在前面已作过讨论,一个正数9有两个平方根3和3;因为只有零的平方为零,所以0有一个平方根是零.因为任何实数的平方都不是负数,所以负数没有平方根,例如3没有平方根.归纳:.一个正数有两个平方根,且它们互为相反数;0有一个平方根是0,负数没有平方根.3.讲解例题例求下列各数的平方根.(1)64;(2);(3)0.0004;(4)(25)2;(5)11.4.想一想(1)()2等于多少?()2等于多少?(2)()2等于多少?(3)对于正数a,()2等于多少?.课堂练习.课时小结本节课学了如下内容.1.平方根的概念.2.平方根的性质.3.平方根与算术平方根的区别与联系.4.求某些非负数的算术平方根和平方根.课后作业习题2.4.活动与探究1.对于任意数a,一定等于a吗?2.中的被开方数a在什么情况下有意义,()2等于什么?解:因为任意数的平方都是非负数,也就是非负数才有平方根,所以被开方数a必须是正数或零,即非负数时有意义.所以()2=a(a0)板书设计:2.2.2 平方根(二)一、平方根的定义;平方根的性质;平方根与算术;平方根的区别与联系.二、例题讲解三、练习四、小结五、作业1.平方根、开平方的概念请大家先思考两个问题.(1)9的算术平方根是3,也就是说,3的平方是9,还有其他的数,它的平方也是9吗?(2)平方等于的数有几个?平方等于0.64的数呢?答:3的平方也是9.的平方是,的平方也是,即平方等于的数有两个.答:平方等于9的数有两个,平方等于的数有两个,由此可知平方等于0.64的数也有两个.根据上一节课的内容,我们知道了3是9的算术平方根,是的算术平方根,那么3,叫9、的什么根呢?请大家认真看书后回答.答:3,分别叫9、的平方根.那是不是说3叫9的算术平方根,3也叫9的算术平方根,即9的算术平方根有一个是3,另一个是3呢?答:不对.根据平方根的定义,一般地,如果一个数x的平方等于a,即x2=a,那么这个x就叫a的平方根(square root),也叫二次方根,3和3的平方都等于9,由定义可知3和3都是9的平方根,即9的平方根有两个3和3,9的算术平方根只有一个是3.(一)随堂练习1.求下列各数的平方根1.44,0,8,441,196,104 2.填空(1)25的平方根是_;(2) =_;(3)()2=_.(二)补充练习1.判断下列各数是否有平方根?并说明理由.(1)(3)2;(2)0;(3)0.01;(4)52;(5)a2;(6)a22a+22.求下列各数的平方根.(1)121;(2)0.01;(3)2;(4)(13)2;(5)(4)3教学反思课 题2.3 立方根课型新授 课时2教学目标(一)教学知识点1.了解立方根的概念,会用根号表示一个数的立方根.2.能用立方运算求某些数的立方根,了解开立方与立方互为逆运算.3.了解立方根的性质.4.区分立方根与平方根的不同.(二)能力训练要求1.在学了平方根的基础上,要求学生能用类比的方法学习立方根的有关知识,领会类比思想.2.发展学生的求同求异思维,使他们能在复杂环境中明辨是非.(三)情感与价值观要求当今社会是科学飞速发展、信息千变万化的时代,每一个人都不可能把一生中要接触的知识全部学会,因此让他们会学知识比学会知识更重要,这就要从小培养良好的学习习惯,能自己解决的问题就自己解决,其中类比的学习方法就是一种重要的学习方法,本节课重点训练学生的类比思想的养成.教学重点立方根的概念.教学难点1.正确理解立方根的概念.2.会求一个数的立方根.3.区分立方根与平方根的不同之处.教学方法类比学习法.教师活动学生活动.新课导入上节课我们学习了平方根的定义,若x2=a,则x叫a的平方根,即x=.若正方体的棱长为a,体积为8,根据正方体体积的公式得a3=8,那a叫8的什么呢?本节课请大家根据上节课的内容自己来类推出结论,若x3=a,则x叫a的什么呢?.新课讲解开立方的定义大家先回忆开平方的定义,再类推开立方的定义.答:求一个数a的平方根的运算,叫做开平方,则求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数.(2)立方根的性质2的立方等于多少?是否有其他的数,它的立方也是8?答:2的立方等于8,(2)3=8,所以没有其他的数的立方等于8.3的立方等于多少?是否有其他的数,它的立方也是27?答:3的立方等于27,33=27,所以没有其他的数的立方等于27.0的立方等于多少?0有几个立方根?答:0的立方等于0,0有1个立方根是0.从刚才的讨论中,大家总结一下正数有几个立方根?0有几个立方根?负数有几个立方根?答:正数有一个立方根,0有一个立方根是0,负数有一个立方根.对.正数有一个正的立方根、负数有一个负的立方根,0的立方根有一个,是0.(3)平方根与立方根的区别与联系.我们已经学习了平方根与立方根的定义,并会求某些数的平方根和立方根,下面请大家说说它们的联系与区别.答:从定义来看,若一个数x的平方等于a,即x2=a,则x叫a的平方根;若一个数x的立方等于a,即x3=a,则x叫a的立方根,都是一个数x的乘方等于a,但一个是平方,另一个是立方.答:一个正数的平方根有两个,一个负数没有平方根,零的平方根有一个是零;一个正数的立方根有一个,并且是正数,一个负数有一个负的立方根,零的立方根有一个是零.答:它们的表示方法和读法不同,一个正数a的平方根表示为,立方根表示为.下面我再系统地总结一下:平方根与立方根的联系与区别.联系:(1)0的平方根、立方根都有一个是0.(2)平方根、立方根都是开方的结果.区别:(1)定义不同:“如果一个数的平方等于a,这个数就叫做a的平方根”;“如果一个数的立方等于a,这个数就叫做a的立方根.”(2)个数不同:一个正数有两个平方根,一个正数有一个立方根;一个负数没有平方根,一个负数有一个立方根.(3)表示法不同正数a的平方根表示为,a的立方根表示为.(4)被开方数的取值范围不同中的被开方数a是非负数;中的被开方数可以是任何数.2.例题讲解例1求下列各数的立方根:(1)27;(2);(3)0.216;(4)5.请大家思考下列问题.表示a的立方根,则()3等于什么?等于什么?大家可以先举例后找规律.: ()3=a. 又a3是a的立方,所以a3的立方根就是a,所以=a.下面就这两个式子进行练习.例2求下列各式的值:(1);(2);(3);(4)()3.议一议1.某化工厂使用一种球形储气罐储藏气体.现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐半径的多少倍?2.一个正方体的体积变为原来的n倍,它的棱长变为原来的多少倍?解:设原正方体的棱长为a,后来的正方体的棱长为b,得na3=b3b=.即后来的棱长变为原来的倍.课时小结1.立方根的定义.2.立方根的性质.3.开立方的定义.4.平方根与立方根的区别与联系.5.会求一个数的立方根.课后作业习题2.5.活动与探究1.求下列各式中的x.(1)8x3+27=0;(2)(x1)30.343=0;(3)81(x+1)4=16;(4)32x51=0.板书设计:2.3 立方根一、(1)立方根开立方的定义(2)立方根的性质(3)立方根与平方根的联系与区别二、例题讲解(求立方根)三、练习四、议一议五、小结六、作业1.请大家先回忆平方根的定义.下面大家能不能再根据平方根的写法来类推立方根的记法呢?.若x的平方等于a,则x叫a的平方根,记作x=,读作x等于正、负二次根号a,简称为x等于正,负根号a.若x的立方等于a,则x叫a的立方根,记作x=,读作x等于正、负三次根号a,简称x等于正、负根号a.请大家对这位同学的回答展开讨论,小组总结后选代表发言.答:我认为这位同学回答得不对.如果x2=a,则x=,x3=a时,x=也成立的话,那如何区分平方根与立方根呢?答:因为乘方与开方是互为逆运算,求立方根可通过逆运算立方来求,如x3=8,因为23=8,所以x=2,只有一个根而不是2,所以立方根的个数不正确.大家的分析非常有道理,请认真看书第13、14页可知,若一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(cube root;也叫三次方根)如2是8的立方根,记为x=,读作x等于三次根号a.课堂练习(一)随堂练习1.求下列各式的值:.2.一个正方体,它的体积是棱长为3厘米的正方体体积的8倍,这个正方体的棱长是多少?解:设正方体的棱长是x厘米,得 (二)补充练习1.求下列各数的立方根:0,1,6,0.0012.求下列各式的值:3.下列说法对不对?4没有立方根;1的立方根是1;的立方根是;5的立方根是;64的算术平方根是教学反思课 题2.4 公园有多宽课型新授 课时2教学目标1.能通过估算检验计算结果的合理性,能估计一个无理数的大致范围,并能通过估算比较两个数的大小。2.掌握估算的方法,形成估算的意识,发展学生的数感。教学重点掌握估算的方法,能通过估算检验计算结果的合理性教学难点掌握估算方法,形成估算的意识教学方法小组探究、讨论教师活动学生活动一、 复习平方根,算术平方根,立方根公式及运用。练习题三、把数学应用于生活例1水房盖好后,要架梯子粉刷外墙,根据生活经验表明,靠墙摆放梯子时,若梯子低端离墙的距离越为梯子长度的1/3,则梯子比较稳定。现在有一个长度为6米的梯子,当梯子稳定摆放时,它的顶端能达到5.6米高的墙头吗?拓展练习:如果当梯子稳定摆放时,要使梯子的顶端能达到水房房顶,需多长的梯子?(误差小于0。1)四、探索提高例2在公园两侧分别有一柱状花塑,高度分别是5-1/2与1/2的(米),通过估算,试比较它们的高矮。你是怎么样想的?与同伴交流。通过估算可以比较大小,让我们来试一试,比较下列两个数的大小。课本40页,随堂练习2五归纳总结六作业(1)习题2。61,2,3,4二情景引入,激发兴趣,某地开辟了一块长方形的荒地,新建一个以环保为主题的公园。已知这快荒地的长是宽的2倍,它的面积为400000米1公园的宽大约是多少?它有1000米吗?2如果要求误差小于10米,它的宽大约是多少?与同伴交流。3该公园中心有一个圆形花圃,它的面积是800米,你能估计它的半径?(误差小于1米)补充问题4在公园左边有一个正方体的水房,用来灌溉花园,它的体积是900立方米,你能求出水房的高吗?(误差小于1米)解决课本“议一议”第1题(2)拓展作业自己设计一个长为宽的3倍,面积为21000平方毫米(图上的数据),以环保为主题的公园,自编估算内容,并估算出结果课 题2.5 用计算器开方课型新授 课时2教学目标1、会用计算器求平方根和立方根。2、经历运用计算器探求数学规律的活动,发展合情推理的能力。教学重点用计算器求平方根和立方根;运用计算器探求数学规律。教学难点探求规律,发展合情推理的能力。教学方法探究-发现-总结-运用教师活动学生活动一、创设情景1、出示投影:科学计算器教学模板。提出课题:利用科学计算器怎样进行开方运算?2、说明开平方、开立方运算的方法。(1)开方运算要用到乘方运算键第二功能“”和的第二功能“”。对于开平方运算,按键顺序为: 被开方数 =对于开平方运算,按键顺序为:3 被开方数 =三、随堂练习利用计算器比较下列各组数的大小:1、, 2、,四、小结1、如何利用计算器求平方根和立方根,举出具体例子并口述过程。2、如何比较两个无理数的大小?3、今天探索了什么规律?五、作业习题2.7二、师生共同参与活动1、让学生跟随教师按步骤利用计算器计算下列各数,各题的按键顺序同课本P42的“按键顺序”。2、做一做利用计算器,求下列各式的值(结果保留4个有效数字)(1); (2) ; (3) ; (4)让学生交流完成上述各题,教师可展示部分学生的答案并指出正确的结果:(1)28.28 (2)1.639 (3)0.7616 (4)0.75603、例1利用计算器比较和的大小。(1)让学生讨论出如何比较两数大小的方法。(2)让一个学生把计算和的过程在教学模板上演示。(3)演示P42页例1的解答。教师归纳:我们可以利用计算器计算比较两个无理数的大小。课 题2.6 实数(1)课型新授 课时2教学目标1、了解实数的意义,能对实数按要求进行分类。2、了解实数范围内,相反数、倒数、绝对值的意义。3、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。教学重点了解实数意义,能对实数进行分类,明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。教学难点用数轴上的点来表示无理数。教学方法探究-发现-总结-运用教 学 内 容 及 过 程备注一、创设问题情景,引出实数的概念1、什么叫无理数,什么叫有理数,举例说明。2、把下列各数分别填入相应的集合内。,0,0.3737737773(相邻两个3之间7的个数逐次增加1)教师引导学生得出实数概述并板书:有理数和无理数统称实数(real number)。 教师点明:实数可分为有理数与无理数。2、了解实数范围内相反数、倒数、绝对值的意义:在有理数中,有理数a的的相反数是什么,不为0的数a的倒数是什么。在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。例如,和是互为相反数,和互为倒数。,。四、议一议。探索用数轴上的点来表示无理数ACB11、复习勾股定理。如图在RtABC中AB= a,BC = b,AC = c,其中a、b、c满足什么条件。当a=1,b=1时,c的值是多少?2、出示投影(1)P45页图24,让学生探讨以下问题:(A)如图OA=OB,数轴上A点对应的数是多少?(B)如果将所有有理数都标到数轴上,那么数轴上被填满了吗?让学生充分思考交流后,引导学生达成以下共识:(1)A点对应的数等于,它介于1与2之间。(2)如果将所有有理数都标到数轴上,数轴未被填满,在数轴上还可以表示无理数。(3)每一个褛都可以用数轴上的点来表示;反过来数轴上的每一个点都表示一个实数。即实数和数轴上的点是一一对应的。(4)一样地,在数轴上,右边的点比左边的点表示的数大。六、小结1、实数的概念2、实数可以怎样分类3、实数a的相反数为,绝对值,若,它的倒数为。4、数轴上的点和实数一一对应。七、作业习题28二、议一议1、在实数概念基础上对实数进行不同分类。无理数与有理数一样,也有正负之分,如是正的,是负的。教师提出以下问题,让学生思考:(1)你能把,0,0.3737737773(相邻两个3之间7的个数逐次增加1)等各数填入下面相应的集合中?正有理数:负有理数:有理数:无理数:(2)0属于正数吗?0属于负数吗?(3)实数除了可以分为有理数与无理数外,实数还可怎样分?让学生讨论回答后,教师引导学生形成共识:实数也可以分为正实数、0、负实数。三、想一想让学生思考以下问题1、a是一个实数,它的相反数为 ,绝对值为 ;2、如果,那么它的倒数为 。让学生回答后,教师归纳并板书:实数a的相反数为,绝对值为,若它的倒数为(教师指明:0没有倒数)五、随堂练习1、判断下列说法是否正确:(1)无限小数都是无理数;(2)无理数都是无限小数; (3)带根号的数都是无理数。2、求下列各数的相反数、倒数和绝对值:(1)3.8 (2) (3) (4) (5)3、在数轴上作出对应的点。板书设计教学反思课 题2.6 实数(2)课型新授 课时2教学目标(一)教学知识点1.了解有理数的运算法则在实数范围内仍然适用.2.用类比的方法,引入实数的运算法则、运算律,并能用这些法则,运算律在实数范围内正确计算.3.正确运用公式.(二)能力训练要求1.让学生根据现有的条件或式子找出它们的共性,进而发现规律,培养学生的钻研精神和创新能力.2.能用类比的方法去解决问题,找规律,用旧知识去探索新知识.(三)情感与价值观要求通过探索规律的过程,培养学生学习的主动性,敢于探索,大胆猜想,和同学积极交流,增强学习数学的兴趣和信心。教学重点1.用类比的方法,引入实数的运算法则、运算律,并能在实数范围内正确进行运算.2.发现规律:.并能用规律进行计算.教学难点1.类比的学习方法.2.发现规律的过程.教学方法类比法.教 学 内 容 及 过 程备注.新课导入上节课我们学习了实数的定义、实数的两种分类,还有在实数范围内如何求相反数、倒数、绝对值,它们的求法和在有理数范围内的求法相同.那么在有理数范围内的运算法则、运算律等能不能在实数范围内继续用呢?本节课让我们来一起进行探究.新课讲解1.有理数的运算法则在实数范围内仍然适用.大家先回忆一下我们在有理数范围内学过哪些法则和运算律.答:加、减、乘、除运算法则,加法交换律,结合律,分配律.好.下面我们就来验证一下这些法则和运算律是否在实数范围内适用.我们知道实数包括有理数和无理数,而有理数不用再考虑,只要对无理数进行验证就可以了.如:,所以说明有理数的运算法则与运算律对实数仍然适用.下面看一些例题. 计算:(1); (2);(3)(2)2;(4).3.例题讲解例题化简:(1);(2);(3)(+1)2;(4). .课堂练习(一)随堂练习化简:(1);(2);(3)(1+)(2);(4)()2.课时小结本节课主要掌握以下内容.1.在实数范围内,有理数的运算法则、运算律仍然适用,并能正确运用.2. (a0,b0);(a0,b0)的推导及运用.课后作业习题2.91.化简:(1);(2);(3);(4)21.活动与探究下面的每个式子各等于什么数?.由此能得到一般的规律吗?对于一个实数a、一定等于a吗?当a0时,=a.当a0时,有所以当a0时,有=a.板书设计:2.6.2 实数(二)一、有理数的运算法则在实数范围内仍然适用二、找规律 (a0,b0); (a0,b0)三、例题讲解 四、课堂练习 五、课时小结 六、课后作业2.做一做填空:(1)=_,=_;(2)=_,=_;(3)=_,=_;(4)_,=_.通过上面计算的结果,大家认
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 土石方工程材料选择与运输方案
- 牛羊屠宰厂建设项目环境影响报告书
- 风光制氢醇一体化项目节能评估报告
- 国际销售合同4篇
- 2025年叉车考试难题库及答案
- 建筑施工电梯安装、拆除专项建筑施工组织设计及对策
- 上海市房地产经纪合同模板
- 离婚后宅基地房屋分割与继承权处理协议
- 低碳环保社区物业合同转让及绿色生活协议
- 离婚后子女抚养费增加与共同财产分割补充协议
- 学前儿童英语教育与活动指导(学前教育专业)全套教学课件
- 2024年湖南长沙湘江新区所属事业单位招聘12人历年高频考题难、易错点模拟试题(共500题)附带答案详解
- 《电能计量装置安装接线规则》
- 物质与意识的辩证关系
- 网络热梗是否融入现实生活
- IEP个别化教育计划-课件
- 128个自然拼读口诀表打印
- 汽车机械基础 课件 绪论
- 浙江博瑞电子科技有限公司新建年产175吨高纯六氟丁二烯项目环境影响报告书
- 客车检车员-中国铁路兰州局集团有限公司编
- 胖东来收银管理制度
评论
0/150
提交评论