制动器研究设计毕业论文.docx_第1页
制动器研究设计毕业论文.docx_第2页
制动器研究设计毕业论文.docx_第3页
制动器研究设计毕业论文.docx_第4页
制动器研究设计毕业论文.docx_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

制动器研究设计毕业论文目录摘 要4ABSTRACT51绪 论61.1制动器设计的意义61.2制动器研究现状61.3本次制动器设计应达到的目标71.4软件介绍72制动器原理、组成与分类82.1一般制动系的基本结构82.2制动工作原理82.3组成92.4类型92.4.1按制动系统的作用分类102.4.2按制动操纵能源分类103制动系统方案论证分析与选择113.1制动器形式方案分析113.1.1鼓式制动器113.1.2盘式制动器134制动器的设计计算154.1制动系统主要参数数值154.1.1相关主要技术参数154.1.2 同步附着系数的分析154.2制动器有关计算164.2.1 确定前后轴制动力矩分配系数164.2.2 制动器制动力矩的确定164.2.3 后轮制动器的结构参数与摩擦系数的选取175制动性能分析225.1 制动性能评价指标225.2 制动效能225.3 制动效能的恒定性225.4 制动时汽车的方向稳定性225.5 制动减速度235.6 制动距离S245.7摩擦衬片(衬块)的磨损特性计算245.8驻车制动计算25结论27总结与体会28致谢29参考文献301 绪 论1.1制动器设计的意义汽车是现代交通工具中用得最多,最普遍,也是最方便的交通运输工具。汽车制动系是汽车底盘上的一个重要系统,它是制约汽车运动的装置。而制动器又是制动系中直接作用制约汽车运动的一个关健装置,是汽车上最重要的安全件。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性要求越来越高,为保证人身和车辆的安全,必须为汽车配备十分可靠的制动系统。本次毕业设计题目为长城赛影SUV轿车制动器的设计。通过查阅相关的资料,运用专业基础理论和专业知识,确定长城赛影SUV轿车制动系统的设计方案,进行部件的设计计算和结构设计。使其达到以下要求:具有足够的制动效能以保证汽车的安全性;在材料的选择上尽量采用对人体无害的材料。1.2制动器研究现状车辆在行驶过程中要频繁进行制动操作,由于制动性能的好坏直接关系到交通和人身安全,因此制动性能是车辆非常重要的性能之一,改善汽车的制动性能始终是汽车设计制造和使用部门的重要任务。当车辆制动时,由于车辆受到与行驶方向相反的外力,所以才导致汽车的速度逐渐减小至0,对这一过程中车辆受力情况的分析有助于制动系统的分析和设计,因此制动过程受力情况分析是车辆试验和设计的基础,由于这一过程较为复杂,因此一般在实际中只能建立简化模型分析,通常人们主要从三个方面来对制动过程进行分析和评价:1)制动效能:即制动距离与制动减速度;2)制动效能的恒定性:即抗热衰退性;3)制动时汽车的方向稳定性;目前,对于整车制动系统的研究主要通过路试或台架进行,由于在汽车道路试验中车轮扭矩不易测量,因此,多数有关传动系!制动系的试验均通过间接测量来进行汽车在道路上行驶,其车轮与地面的作用力是汽车运动变化的根据,在汽车道路试验中,如果能够方便地测量出车轮上扭矩的变化,则可为汽车整车制动系统性能研究提供更全面的试验数据和性能评价。制动器是制动系统中用以产生阻碍车辆运动或运动趋势的力的部件。一般制动器都是通过其中的固定元件对旋转元件施加制动力矩,使旋转角速度减低,同时依靠车轮与路面的附着作用,产生路面对车轮的制动力,以使汽车减速。目前,各类汽车所用的摩擦制动器可分为鼓式和盘式两大类。前者摩擦副中的旋转元件为制动鼓,工作表面为圆柱面;后者的旋转元件为圆盘状的制动盘,以端面为工作表面。盘式制动器制动性能优于鼓式制动器,目前乘用车主要采用前盘后鼓式和全盘式制动器,20%的乘用车采用前盘后鼓式制动器,全鼓式制动器已在乘用车领域淘汰;商用车主要采用全鼓式制动器,只有高档客车和有特殊需求的车辆才采用前盘后鼓式制动器和全盘式制动器。随着对汽车制动性能的提高,越来越多的先进电子制动技术得到采用。目前随着国内制动器技术水平的逐步提高,可以基本满足汽车市场需求,并能实现部分出口。国内制动器行业市场集中度很高,主要集中在几家大型专业化制动器生产企业。随着国内汽车市场的发展,汽车制动器市场也将继续快速增长,良好的市场环境为国内汽车制动器企业的发展奠定了良好的基础,同时也带来了很好的投资机会。1.3本次制动器设计应达到的目标为了保证汽车行使安全,发挥高速行使的能力,制动器必须满足下列要求。1、制动效能好。评价汽车制动效能的指标有:制动距离、制动减速度、制动时间。2、操纵轻便,制动时的方向稳定性好。制动时,前后车轮制动力分配合理,左右车轮上的制动力应基本相等,以免汽车制动时发生跑偏和侧滑。3、制动平顺性好。制动时应柔和、平稳;解除时应迅速、彻底。4、散热性好,调整方便。这要求制动蹄摩擦片抗高温能力强,潮湿后恢复能力快,磨损后间隙能够调整,并能够防尘、防油。本次设计制动系统应达到的目标:1)具有良好的制动效能;2)具有良好的制动效能的稳定性;3)制动时汽车操纵稳定性好;4)制动效能的热稳定性好。1.4软件介绍本次设计主要使用三维设计软件UG进行三维视图的设计,UGNX是UnigraphicsSolutions公司推出的集CAD/CAM/CAE于一体的三维参数化设计软件,在汽车、交通、航空航天、日用消费品、通用机械及电子工业等工程设计领域得到了大规模的应用。UG NX5是NX系列的最新版本,在原有基础上做了大量的改进。本次设计中还使用了UG的装配功能,UG装配建模是用于产品的模拟装配,支持“由底向上”和“由顶向下”的装配方法。装配建模的主模型可以在总装配的上下文中设计和编辑,组件以逻辑对齐、贴合和偏移等方式被灵活地配对或定位,改进了性能和减少存储的需求。参数化的装配建模提供为描述组件间配对关系和为规定共同创建的紧固件组和共享,使产品开发并行工作。2 制动器原理、组成与分类2.1一般制动系的基本结构主要由车轮制动器和液压传动机构组成。车轮制动器主要由旋转部分、固定部分和调整机构组成,旋转部分是制动鼓;固定部分包括制动蹄和制动底板;调整机构由偏心支承销和调整凸轮组成用于调整蹄鼓间隙。制动传动机构主要由制动踏板、推杆、制动主缸、制动轮缸和管路组成。2.2制动工作原理制动系统的一般工作原理是,利用与车身(或车架)相连的非旋转元件和与车轮(或传动轴)相连的旋转元件之间的相互摩擦来阻止车轮的转动或转动的趋势。1)制动系不工作时 蹄鼓间有间隙,车轮和制动鼓可自由旋转。2)制动时 要汽车减速,脚踏下制动器踏板通过推杆和主缸活塞,使主缸油液在一定压力下流入轮缸,并通过两轮缸活塞推使制动蹄绕支承销转动,上端向两边分开而以其摩擦片压紧在制动鼓的内圆面上。不转的制动蹄对旋转制动鼓产生摩擦力矩,从而产生制动力。3)解除制动 当放开制动踏板时回位弹簧即将制动蹄拉回原位,制动力消失。制动主缸的结构及工作过程 制动主缸的作用是将自外界输入的机械能转换成液压能,从而液压能通过管路再输给制动轮缸制动主缸分单腔和双腔式两种,分别用于单、双回路液压制动系。 (1)单腔式制动主缸1)制动系不工作时 不制动时,主缸活塞位于补偿孔、回油孔之间。2)制动时 活塞左移,油压升高,进而车轮制动。3)解除制动 撤除踏板力,回位弹簧作用,活塞回位,油液回流,制动解除。(2)双腔式制动主缸1)结构(如一汽奥迪100型轿车双回路液压制动系统中的串联式双腔制动主缸)主缸有两腔第一腔与右前、左后制动器相连;第二腔与左前、右后制动器相通每套管路和工作腔又分别通过补偿孔和回油孔与储油罐相通。第二活塞由右端弹簧保持在正确的初始位置,使补偿孔和进油孔与缸内相通。第一活塞在左端弹簧作用下,压靠在套上,使其处于补偿孔和回油孔之间的位置。2)工作原理制动时,第一活塞左移,油压升高,克服弹力将制动液送入右前左后制动回路;同时又推动第二活塞,使第二腔液压升高,进而两轮制动解除制动时,活塞在弹簧作用下回位,液压油自轮缸和管路中流回制动主缸。如活塞回位迅速,工作腔内容积也迅速扩大,使油压迅速降低。储液罐里的油液可经进油孔和活塞上面的小孔推开密封圈流入工作腔。当活塞完全回位时,补偿孔打开,工作腔内多余的油由补偿孔流回储液罐。若液压系统由于漏油,以及由于温度变化引起主缸工作腔、管路、轮缸中油液的膨胀或收缩,都可以通过补偿孔进行调节。制动轮缸的结构及工作过程制动轮缸的功用:是将液力转变为机械推力。有单活塞和双活塞两种。结构奥迪100的双活塞式轮缸体内有两活塞,两皮碗,弹簧使皮碗、活塞、制动蹄紧密接触。工作过程制动时,液压油进入两活塞间油腔,进而推动制动蹄张开,实现制动。轮缸缸体上有放气螺栓,以保证制动灵敏可靠。2.3组成(1)供能装置:包括供给、调节制动所需能量以及改善传动介质状态的各种部件(2)控制装置:产生制动动作和控制制动效果各种部件,如制动踏板(3)传动装置:包括将制动能量传输到制动器的各个部件如制动主缸、轮缸(4)制动器:产生阻碍车辆运动或运动趋势的部件制动系统一般由制动操纵机构和制动器两个主要部分组成。制动操纵机构,产生制动动作、控制制动效果并将制动能量传输到制动器的各个部件。制动器,产生阻碍车辆的运动或运动趋势的力(制动力)的部件。汽车上常用的制动器都是利用固定元件与旋转元件工作表面的摩擦而产生制动力矩,称为摩擦制动器。它有鼓式制动器和盘式制动器两种结构型式。2.4类型(1)按功用分:行车制动系驻车制动系辅助制动系。1)行车制动系是由驾驶员用脚来操纵的,故又称脚制动系。它的功用是使正在行驶中的汽车减速或在最短的距离内停车。2)驻车制动系是由驾驶虽用手来操纵的,故又称手制动系。它的功用是使已经停在各种路面上的汽车驻留原地不动。3)第二制动系在行车制动系失效的情况下,保证汽车仍能实现减速或停车的一套装置。在许多国家的制动法规中规定,第二制动系也是汽车必须具备的。4)辅助制动系经常在山区行驶的汽车以及某些特殊用途的汽车,为了提高行车的安全性和减轻行车制动系性能的衰退及制动器的磨损,用以在下坡时稳定车速。(2)按制动能量传输分:机械式液压式气压式电磁式组合式(3)按回路多少分:单回路制动系双回路制动系(4)按能源分:人力制动系动力制动系伺服制动系1)人力制动系以驾驶员的肌体作为唯一的制动能源的制动系。2)动力制动系完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的制动系。3)伺服制动系兼用人力和发动机动力进行制动的制动系。2.4.1按制动系统的作用分类制动系统可分为行车制动系统、驻车制动系统、应急制动系统及辅助制动系统等。用以使行驶中的汽车降低速度甚至停车的制动系统称为行车制动系统;用以使已停驶的汽车驻留原地不动的制动系统则称为驻车制动系统;在行车制动系统失效的情况下,保证汽车仍能实现减速或停车的制动系统称为应急制动系统;在行车过程中,辅助行车制动系统降低车速或保持车速稳定,但不能将车辆紧急制停的制动系统称为辅助制动系统。上述各制动系统中,行车制动系统和驻车制动系统是每一辆汽车都必须具备的。2.4.2按制动操纵能源分类制动系统可分为人力制动系统、动力制动系统和伺服制动系统等。以驾驶员的肌体作为唯一制动能源的制动系统称为人力制动系统;完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的系统称为动力制动系统;兼用人力和发动机动力进行制动的制动系统称为伺服制动系统或助力制动系统。按制动能量的传输方式分类制动系统可分为机械式、液压式、气压式、电磁式等。同时采用两种以上传能方式的制动系称为组合式制动系统。3 制动系统方案论证分析与选择3.1制动器形式方案分析汽车制动器几乎均为机械摩擦式,即利用旋转元件与固定元件两工作表面间的摩擦产生的制动力矩使汽车减速或停车。一般摩擦式制动器按其旋转元件的形状分为鼓式和盘式两大类。3.1.1鼓式制动器鼓式制动器是最早形式的汽车制动器,当盘式制动器还没有出现前,它已经广泛用干各类汽车上。鼓式制动器又分为内张型鼓式制动器和外束型鼓式制动器两种结构型式。内张型鼓式制动器的摩擦元件是一对带有圆弧形摩擦蹄片的制动蹄,后者则安装在制动底板上,而制动底板则紧固在前桥的前梁或后桥桥壳半袖套管的凸缘上,其旋转的摩擦元件为制动鼓。车轮制动器的制动鼓均固定在轮鼓上。制动时,利用制动鼓的圆柱内表面与制动蹄摩擦路片的外表面作为一对摩擦表面在制动鼓上产生摩擦力矩,故又称为蹄式制动器。外束型鼓式制动器的固定摩擦元件是带有摩擦片且刚度较小的制动带,其旋转摩擦元件为制动鼓,并利用制动鼓的外因柱表面与制动带摩擦片的内圆弧面作为一对摩擦表面,产生摩擦力矩作用于制动鼓,故又称为带式制动器。在汽车制动系中,带式制动器曾仅用作一些汽车的中央制动器,但现代汽车已很少采用。所以内张型鼓式制动器通常简称为鼓式制动器,通常所说的鼓式制动器就是指这种内张型鼓式结构。鼓式制动器按蹄的类型分为下列五种形式。1)领从蹄式制动器图31领从蹄式制动器如图所示,若图上方的旋向箭头代表汽车前进时制动鼓的旋转方向(制动鼓正向旋转),则蹄1为领蹄,蹄2为从蹄。汽车倒车时制动鼓的旋转方向变为反向旋转,则相应地使领蹄与从蹄也就相互对调了。这种当制动鼓正、反方向旋转时总具有一个领蹄和一个从蹄的内张型鼓式制动器称为领从蹄式制动器。领蹄所受的摩擦力使蹄压得更紧,即摩擦力矩具有“增势”作用,故又称为增势蹄;而从蹄所受的摩擦力使蹄有离开制动鼓的趋势,即摩擦力矩具有“减势”作用,故又称为减势蹄。“增势”作用使领蹄所受的法向反力增大,而“减势”作用使从蹄所受的法向反力减小。领从蹄式制动器的效能及稳定性均处于中等水平,但由于其在汽车前进与倒车时的制动性能不变,且结构简单,造价较低,也便于附装驻车制动机构,故这种结构仍广泛用于中、重型载货汽车的前、后轮制动器及轿车的后轮制动器。2)双领蹄式制动器若在汽车前进时两制动蹄均为领蹄的制动器,则称为双领蹄式制动器。显然,当汽车倒车时这种制动器的两制动蹄又都变为从蹄故它又可称为单向双领蹄式制动器。如图25(c)所示,两制动蹄各用一个单活塞制动轮缸推动,两套制动蹄、制动轮缸等机件在制动底板上是以制动底板中心作对称布置的,因此,两蹄对制动鼓作用的合力恰好相互平衡,故属于平衡式制动器。双领蹄式制动器有高的正向制动效能,但倒车时则变为双从蹄式,使制动效能大降。这种结构常用于中级轿车的前轮制动器,这是因为这类汽车前进制动时,前轴的动轴荷及 附着力大于后轴,而倒车时则相反。图33双向双领蹄式制动器图32双领蹄式制动器3)双向双领蹄式制动器当制动鼓正向和反向旋转时,两制动助均为领蹄的制动器则称为双向双领蹄式制动器。它也属于平衡式制动器。由于双向双领蹄式制动器在汽车前进及倒车时的制动性能不变,因此广泛用于中、轻型载货汽车和部分轿车的前、后车轮,但用作后轮制动器时,则需另设中央制动器用于驻车制动。图35双向增力式制动器图34单向增力式制动器4)单向增力式制动器单向增力式制动器如图所示两蹄下端以顶杆相连接,第二制动蹄支承在其上端制动底板上的支承销上。由于制动时两蹄的法向反力不能相互平衡,因此它居于一种非平衡式制动器。单向增力式制动器在汽车前进制动时的制动效能很高,且高于前述的各种制动器,但在倒车制动时,其制动效能却是最低的。因此,它仅用于少数轻、中型货车和轿车上作为前轮制动器。5)双向增力式制动器将单向增力式制动器的单活塞式制动轮缸换用双活塞式制动轮缸,其上端的支承销也作为两蹄共用的,则成为双向增力式制动器。对双向增力式制动器来说,不论汽车前进制动或倒退制动,该制动器均为增力式制动器。双向增力式制动器在大型高速轿车上用的较多,而且常常将其作为行车制动与驻车制动共用的制动器,但行车制动是由液压经制动轮缸产生制动蹄的张开力进行制动,而驻车制动则是用制动操纵手柄通过钢索拉绳及杠杆等机械操纵系统进行操纵。双向增力式制动器也广泛用作汽车的中央制动器,因为驻车制动要求制动器正向、反向的制动效能都很高,而且驻车制动若不用于应急制动时也不会产生高温,故其热衰退问题并不突出。但由于结构问题使它在制动过程中散热和排水性能差,容易导致制动效率下降。因此,在轿车领域上己经逐步退出让位给盘式制动器。但由于成本比较低,仍然在一些经济型车中使用,主要用于制动负荷比较小的后轮和驻车制动。本次设计最终采用的是领从蹄式制动器。3.1.2盘式制动器盘式制动器按摩擦副中定位原件的结构不同可分为钳盘式和全盘式两大类。钳盘式图36钳盘式制动器示意图a)固定钳式b)滑动钳式c)摆动钳式钳盘式制动器按制动钳的结构型式又可分为定钳盘式制动器、浮钳盘式制动器等。定钳盘式制动器:这种制动器中的制动钳固定不动,制动盘与车轮相联并在制动钳体开口槽中旋转。具有下列优点:除活塞和制动块外无其他滑动件,易于保证制动钳的刚度;结构及制造工艺与一般鼓式制动器相差不多,容易实现从鼓式制动器到盘式制动器的改革;能很好地适应多回路制动系的要求。浮动盘式制动器:这种制动器具有以下优点:仅在盘的内侧有液压缸,故轴向尺寸小,制动器能进一步靠近轮毂;没有跨越制动盘的油道或油管加之液压缸冷却条件好,所以制动液汽化的可能性小;成本低;浮动钳的制动块可兼用于驻车制动。(2)全盘式在全盘式制动器中,摩擦副的旋转元件及固定元件均为圆形盘,制动时各盘摩擦表面全部接触,其作用原理与摩擦式离合器相同。由于这种制动器散热条件较差,其应用远没有浮钳盘式制动器广泛。通过对盘式、鼓式制动器的分析比较可以得出盘式制动器与鼓式制动器比较有如下均一些突出优点:(1)制动稳定性好.它的效能因素与摩擦系数关系的K-p曲线变化平衡,所以对摩擦系数的要求可以放宽,因而对制动时摩擦面间为温度、水的影响敏感度就低。所以在汽车高速行驶时均能保证制动的稳定性和可靠性。(2)盘式制动器制动时,汽车减速度与制动管路压力是线性关系,而鼓式制动器却是非线性关系。(3)输出力矩平衡.而鼓式则平衡性差。(4)制动盘的通风冷却较好,带通风孔的制动盘的散热效果尤佳,故热稳定性好,制动时所需踏板力也较小。(5)车速对踏板力的影响较小。4 制动器的设计计算4.1制动系统主要参数数值4.1.1相关主要技术参数汽车前轴满载质量 G=1050kg 后轴满载 G=1300kg 前轴空载质量 G=870kg 后轴空载 G=800kg质心位置: a=1.44m b=1.16m重心高度满载时h=820mm,空载时h=840mm轴距L=2615mm前/后轮距(mm)1515/1520汽车最高行驶速度Vmax130km/h车轮工作半径:462mm轮胎型式:P235/70R16同步附着系数:=0.8 图 41 制动工况受力简图4.1.2 同步附着系数的分析(1)当时:制动时总是前轮先抱死,这是一种稳定工况,但丧失了转向能力;(2)当时:制动时总是后轮先抱死,这时容易发生后轴侧滑而使汽车失去方向稳定性;(3)当时:制动时汽车前、后轮同时抱死,是一种稳定工况,但也丧失了转向能力。分析表明,汽车在同步附着系数为的路面上制动(前、后车轮同时抱死)时,其制动减速度为,即,为制动强度。而在其他附着系数的路面上制动时,达到前轮或后轮即将抱死的制动强度这表明只有在的路面上,地面的附着条件才可以得到充分利用。根据相关资料查出轿车0.8,故取=0.84.2 制动器有关计算4.2.1 确定前后轴制动力矩分配系数根据公式: (3-1)得: 4.2.2 制动器制动力矩的确定 由轮胎与路面附着系数所决定的前后轴最大附着力矩: (3-2)式中:该车所能遇到的最大附着系数; z制动强度; 车轮有效半径; 后轴最大制动力矩; G汽车满载质量;L汽车轴距;其中z=0.75 (3-3)故后轴=1.33Nmm后轮的制动力矩为=0.665Nmm前轴= T=0.7/(1-0.7)1.33=3.1Nmm前轮的制动力矩为3.1/2=2.55Nmm4.2.3 后轮制动器的结构参数与摩擦系数的选取1)制动鼓直径D轮胎规格为P235/70R16 轮辋为16in 表41轮辋直径/in1213141516制动鼓内径/mm轿车180200240260货车220240260300320 查表得制动鼓内径:=260mm 根据轿车D/在0.640.74之间选取取D/=0.7。则,=260/0.7=370 mm2)制动蹄摩擦衬片的包角和宽度b图42鼓式制动器主要几何参数制动蹄摩擦衬片的包角在=范围内选取。取=根据单个制动器总的衬片面积取200300取A=300 查QC/T309-1999标准:可得:b=50 mm3)摩擦衬片初始角的选取根据=-(/2)=4)张开力F作用线至制动器中心的距离ee=0.8R制动蹄支撑销中心的坐标位置a与ca=0.8R5)摩擦片摩擦系数选择摩擦片时,不仅希望其摩擦系数要高些,而且还要求其热稳定行好,受温度和压力的影响小。不宜单纯地追求摩擦材料的高摩擦系数,应提高对摩擦系数的稳定性和降低制动器对摩擦系数偏离正常值的敏感性的要求。在假设的理想条件下计算制动器的制动力矩,取f=0.3可使计算结果接近实际值。另外,在选择摩擦材料时,应尽量采用减少污染和对人体无害的材料。 所以选择摩擦系数f=0.36)制动鼓制动鼓应具有非常好的刚性和大的热容量,制动时温升不应超过极限值。制动鼓材料应与摩擦衬片相匹配,以保证具有高的摩擦系数并使工作表面磨损均匀。制动鼓相对于轮毂的对中是圆柱表面的配合来定位,并在两者装配紧固后精加工制动鼓内工作表面,以保证两者的轴线重合。两者装配后还需进行动平衡。其许用不平衡度对轿车为15Ncm20 Ncm;对货车为30 Ncm40 Ncm。微型轿车要求其制动鼓工作表面的圆度和同轴度公差0.03mm,径向跳动量0O 5mm,静不平衡度15N.cm。制动鼓壁厚的选取主要是从其刚度和强度方面考虑。壁厚取大些也有利于增大其热容量,但试验表明,壁厚由ll mm增至20 mm时,摩擦表面的平均最高温度变化并不大。一般铸造制动鼓的壁厚:轿车为7mm12mm;中、重型载货汽车为13mm18mm。制动鼓在闭口一侧外缘可开小孔,用于检查制动器间隙。本次设计采用的材料是HT20-40。 图 44 制动鼓7)制动蹄制动蹄腹板和翼缘的厚度,轿车的约为3mm5mm;货车的约为5mm8mm。摩擦衬片的厚度,轿车多为45mm5mm;货车多为8mm以上。衬片可铆接或粘贴在制动蹄上,粘贴的允许其磨损厚度较大,使用寿命增长,但不易更换衬片;铆接的噪声较小。本次制动蹄采用的材料为HT200。 图 45 制动蹄8)制动底板制动底板是除制动鼓外制动器各零件的安装基体,应保证各安装零件相互间的正确位置。制功底板承受着制动器工作时的制动反力矩,因此它应有足够的刚度。为此,由钢板冲压成形的制动底板均只有凹凸起伏的形状。重型汽车则采用可联铸铁KTH37012的制动底板。刚度不足会使制动力矩减小,踏板行程加大,衬片磨损也不均匀。本次设计采用45号钢。9)制动蹄的支承 二自由度制动筛的支承,结构简单,并能使制动蹄相对制动鼓自行定位。为了使具有支承销的一个自由度的制动蹄的工作表面与制动鼓的工作表面同轴心,应使支承位置可调。例如采用偏心支承销或偏心轮。支承销由45号钢制造并高频淬火。其支座为可锻铸铁(KTH37012)或球墨铸铁(QT40018)件。青铜偏心轮可保持制动蹄腹板上的支承孔的完好性并防止这些零件的腐蚀磨损。具有长支承销的支承能可靠地保持制动蹄的正确安装位置,避免侧向偏摆。有时在制动底板上附加一压紧装置,使制动蹄中部靠向制动底板,而在轮缸活塞顶块上或在张开机构调整推杆端部开槽供制动蹄腹板张开端插入,以保持制动蹄的正确位置。10)制动轮缸制功轮缸为液压制动系采用的活塞式制动蹄张开机构,其结构简单,在车轮制动器中布置方便。轮缸的缸体由灰铸铁HT250制成。其缸简为通孔,需镗磨。活塞由铝合金制造。活塞外端压有钢制的开槽顶块,以支承插人槽中的制动蹄腹板端部或端部接头。轮缸的工作腔由装在活塞上的橡胶密封圈或靠在活塞内端面处的橡胶皮碗密封。多数制动轮缸有两个等直径活塞;少数有四个等直径活塞;双领路式制动器的两蹄则各用一个单活塞制动轮缸推动。本次设计采用的是HT250。5 制动性能分析任何一套制动装置都是由制动器和制动驱动机构两部分组成。汽车的制动性是指汽车在行驶中能利用外力强制地降低车速至停车或下长坡时能维持一定车速的能力。5.1 制动性能评价指标汽车制动性能主要由以下三个方面来评价:1)制动效能,即制动距离和制动减速度;2)制动效能的稳定性,即抗衰退性能;3)制动时汽车的方向稳定性,即制动时汽车不发生跑偏、侧滑、以及失去转向能力的性能。5.2 制动效能制动效能是指在良好路面上,汽车以一定初速度制动到停车的制动距离或制动时汽车的减速度。制动效能是制动性能中最基本的评价指标。制动距离越小,制动减速度越大,汽车的制动效能就越好。5.3 制动效能的恒定性制动效能的恒定性主要指的是抗热衰性能。汽车在高速行驶或下长坡连续制动时制动效能保持的程度。因为制动过程实际上是把汽车行驶的动能通过制动器吸收转换为热能,所以制动器温度升高后能否保持在冷态时的制动效能,已成为设计制动器时要考虑的一个重要问题。5.4 制动时汽车的方向稳定性制动时汽车的方向稳定性,常用制动时汽车给定路径行驶的能力来评价。若制动时发生跑偏、侧滑或失去转向能力。则汽车将偏离原来的路径。制动过程中汽车维持直线行驶,或按预定弯道行驶的能力称为方向稳定性。影响方向稳定性的包括制动跑偏、后轴侧滑或前轮失去转向能力三种情况。制动时发生跑偏、侧滑或失去转向能力时,汽车将偏离给定的行驶路径。因此,常用制动时汽车按给定路径行驶的能力来评价汽车制动时的方向稳定性,对制动距离和制动减速度两指标测试时都要求了其试验通道的宽度。方向稳定性是从制动跑偏、侧滑以及失去转向能力等方面考验。制动跑偏的原因有两个:1)汽车左右车轮,特别是转向轴左右车轮制动器制动力不相等。2)制动时悬架导向杆系与转向系拉杆在运动学上的不协调(互相干涉)。前者是由于制动调整误差造成的,是非系统的。而后者是属于系统性误差。侧滑是指汽车制动时某一轴的车轮或两轴的车轮发生横向滑动的现象。最危险的情况是在高速制动时后轴发生侧滑。防止后轴发生侧滑应使前后轴同时抱死或前轴先抱死后轴始终不抱死。后轴侧滑 其原因是制动时后轴车轮比前轴的先抱死拖滑造成,汽车处于极危险的状态。若能使制动是前轮先抱死或同时抱死就能防止后轴侧滑。现在的一些电子设备,如ABS,电子制动力分配系统,都是用来控制车轮抱死的装置,对汽车制动安全性的提高有很大帮助。 前轴丧失转向能力 其原因是前轮先抱死,而后轮滑动。这是即使转动方向盘也不能是汽车转向,汽车继续以直线行驶,而相比后轮先抱死的情况,由于车身离心力作用,汽车处于相对稳定的状态。 所以在分配制动力时首先要考虑不能 让后轮先抱死的情况,其次是考虑尽量减少前轮抱死或前后轮同时抱死的情况,一为此汽车的制动稳定性。最理想的状态是防止任何车轮的抱死,因为滚动摩擦系数比滑动摩擦系数要大,因而滚动情况下能获得的最大制动力就大,能更好的控制制动距离和制动减速度。理论上分析如下,真正的评价是靠实验的。5.5 制动减速度制动系的作用效果,可以用最大制动减速度及最小制动距离来评价。假设汽车是在水平的,坚硬的道路上行驶,并且不考虑路面附着条件,因此制动力是由制动器产生。此时=式中 :汽车前、后轮制动力矩的总合。= M+ M=665+2550=3215Nmr-滚动半径 r=462mmGa汽车总重 Ga=2350kg代入数据得=(665+2550)/0.4622350=5.96m/s轿车制动减速度应在5.87m/s,所以符合要求。5.6 制动距离S在匀减速度制动时,制动距离S为S=1/3.6(t+ t/2)Va+ Va/254式中,t:消除蹄与制动鼓间隙时间,取0.1s t:制动力增长过程所需时间取0.2s故S=1/3.6(0.1+ 0.2/2)30+ 30/2540.7=7.2m轿车的最大制动距离为:S=0.1V+V/150V取30km/小时。S=0.1+30/150=9mSS所以符合要求。5.7摩擦衬片(衬块)的磨损特性计算摩擦衬片的磨损与摩擦副的材质,表面加工情况、温度、压力以及相对滑磨速度等多种因素有关,因此在理论上要精确计算磨损性能是困难的。但试验表明,摩擦表面的温度、压力、摩擦系数和表面状态等是影响磨损的重要因素。汽车的制动过程,是将其机械能(动能、势能)的一部分转变为热量而耗散的过程。在制动强度很大的紧急制动过程中,制动器几乎承担了耗散汽车全部动力的任务。此时由于在短时间内制动摩擦产生的热量来不及逸散到大气中,致使制动器温度升高。此即所谓制动器的能量负荷。能量负荷愈大,则摩擦衬片(衬块)的磨损亦愈严重。比能量耗散率双轴汽车的单个前轮制动器和单个后轮制动器的比能量耗

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论