已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
% PPT 例2 一维正态密度与二维正态密度syms x y;s=1; t=2; mu1=0; mu2=0; sigma1=sqrt(1+s2); sigma2=sqrt(1+t2); x=-6:0.1:6;f1=1/sqrt(2*pi*sigma1)*exp(-(x-mu1).2/(2*sigma12);f2=1/sqrt(2*pi*sigma2)*exp(-(x-mu2).2/(2*sigma22);plot(x,f1,r-,x,f2,k-.) rho=(1+s*t)/(sigma1*sigma2); f=1/(2*pi*sigma1*sigma2*sqrt(1-rho2)*exp(-1/(2*(1-rho2)*(x-mu1)2/sigma12-2*rho*(x-mu1)*(y-mu2)/(sigma1*sigma2)+(y-mu2)2/sigma22);ezsurf(f)% % The daily log returns on the stock have a mean of 0.05/year and a standard deviation of 0.23/year. These can be converted to rates per trading day by deviding by 253 and sqrt(253), respectively.Question 1: What is the probability that the value of the stock will be below $950,000 at the close day of at least one of the next 45 trading days? clear;niter=1.0E5; % number of iterationsbelow=repmat(0,1,niter); % set up storagerandn(seed,0);for i=1:niter r=normrnd(0.05/253,0.23/sqrt(253),1,45); % generate random numbers logPrice=log(1.0E6)+cumsum(r); minlogP=min(logPrice); % minmum price over next 45 days below(i)=sum(minlogPlog(950000); endPro=mean(below)% P29 随机相位正弦波仿真% 1 time simulationw=2; N=1000; mu=2; sigma=3;s=rand(state);A=mu+sigma*randn(1,N); % A=normrnd(mu,sigma,1,N)theta=-pi+2*pi*rand(1,N);t=1:N;x=A.*cos(w*t+theta); capmu=mean(x) tao=1x1=A.*cos(w*(t+tao)+theta);capgamma=mean(x-capmu).*(x1-capmu) % m time simulationclear; w=2; N=1000; mu=2; sigma=3;m=500;capmu1=;capgamma1=;for i=1:ms=rand(state);A=mu+sigma*randn(1,N);theta=-pi+2*pi*rand(1,N);t=1:N;x=A.*cos(w*t+theta);capmu=mean(x);capmu1=capmu1,capmu; tao=1;x1=A.*cos(w*(t+tao)+theta);capgamma=mean(x-capmu).*(x1-capmu);capgamma1=capgamma1,capgamma;endplot(1:m,capmu1,*,1:m,capgamma1,o) capmu=mean(capmu1);capgamma=mean(capgamma1); err1=mean(capmu1-0).2);gamma=(sigma2+mu2)*cos(w*tao)/2;err2=mean(capgamma1-gamma).2);capmu,capgamma; err1, err2 % 输出: 0.0058 -2.7005 0.0065 0.0736% P37 例3.1.1p1=poisscdf(5,10)p2=poisspdf(0,10)p1,p2%输出p1 =0.0671p2 =4.5400e-005ans =0.0671 0.0000 % P43 例3.2.1p3=poisspdf(9,12)% 输出p3 = 0.0874 % P43 例3.2.2p4=poisspdf(0,12)% 输出p4 = 6.1442e-006% P39-40(Th3.1.1) Solve the difference equation system, find the solution% 输入:syms p0 p1 p2 ;S=dsolve(Dp0=-lamda*p0,Dp1=-lamda*p1+lamda*p0,Dp2=-lamda*p2+lamda*p1,p0(0) = 1,p1(0) = 0,p2(0) = 0);S.p0,S.p1,S.p2% 输出:ans =exp(-lamda*t), exp(-lamda*t)*t*lamda, 1/2*exp(-lamda*t)*t2*lamda2% P43 泊松过程仿真% simulate 10 timesclear;m=10; lamda=1; x=; for i=1:ms=exprnd(lamda,seed,1);x=x,exprnd(lamda);t1=cumsum(x);endx,t1 %输出:ans = 0.6509 0.6509 2.4061 3.0570 0.1002 3.1572 0.1229 3.2800 0.8233 4.1033 0.2463 4.3496 1.9074 6.2570 0.4783 6.7353 1.3447 8.0800 0.8082 8.8882%输入:N=;for t=0:0.1:(t1(m)+1)if tt1(1) N=N,0;elseif tt1(2) N=N,1;elseif tt1(3) N=N,2;elseif tt1(4) N=N,3;elseif tt1(5) N=N,4;elseif tt1(6) N=N,5;elseif tt1(7) N=N,6;elseif tt1(8) N=N,7;elseif tt1(9) N=N,8; elseif tt1(10) N=N,9;else N=N,10;endendplot(0:0.1:(t1(m)+1),N,r-) %输出:% simulate 100 timesclear;m=100; lamda=1; x=; for i=1:ms= rand(seed);x=x,exprnd(lamda);t1=cumsum(x);endx,t1 N=;for t=0:0.1:(t1(m)+1)if t=t1(i) & tt1(m) N=N,m;endendplot(0:0.1:(t1(m)+1),N,r-) % 输出:% P48 非齐次泊松过程仿真% simulate 10 timesclear;m=10; lamda=1; x=; for i=1:ms=rand(seed); % exprnd(lamda,seed,1); set seedsx=x,exprnd(lamda);t1=cumsum(x);endx,t1 N=; T=;for t=0:0.1:(t1(m)+1)T=T,t.3; % time is adjusted, cumulative intensity function is t3. if t=t1(i) & tt1(m) N=N,m; endendplot(T,N,r-) % outputans = 0.4220 0.4220 3.3323 3.7543 0.1635 3.9178 0.0683 3.9861 0.3875 4.3736 0.2774 4.6510 0.2969 4.9479 0.9359 5.8838 0.4224 6.3062 1.7650 8.0712 10 times simulation 100 times simulation% P50 复合泊松过程仿真% simulate 100 timesclear;niter=100; % iterate numberlamda=1; % arriving ratet=input(Input a time:,s)for i=1:niter rand(state,sum(clock); x=exprnd(lamda); % interval time t1=x; while t1t x=x,exprnd(lamda); t1=sum(x); % arriving time end t1=cumsum(x); y=trnd(4,1,length(t1); % rand(1,length(t1); gamrnd(1,1/2,1,length(t1); frnd(2,10,1,length(t1); t2=cumsum(y);endx,t1,y,t2 X=; m=length(t1);for t=0:0.1:(t1(m)+1) if t=t1(i) & tt1(m) X=X,t2(m); endendplot(0:0.1:(t1(m)+1),X,r-) 跳跃度服从0,1均匀分布情形 跳跃度服从分布情形跳跃度服从t(10)分布情形 % Simulate the probability that sales revenue falls in some interval. (e.g. example 3.3.6 in teaching material)clear; niter=1.0E4; % number of iterationslamda=6; % arriving rate (unit:minute)t=720; % 12 hours=720 minutesabove=repmat(0,1,niter); % set up storage for i=1:niter rand(state,sum(clock); x=exprnd(lamda); % interval time n=1; while x=t n=n;else n=n+1; end end z=binornd(200,0.5,1,n); % generate n sales y=sum(z); above(i)=sum(y432000); end pro=mean(above)Output: pro =0.3192% Simulate the loss pro. For a Compound Poisson processclear; niter=1.0E3; % number of iterationslamda=1; % arriving ratet=input(Input a time:,s) below=repmat(0,1,niter); % set up storage for i=1:niter rand(state,sum(clock); x=exprnd(lamda); % interval time n=1; while x=t n=n;else n=n+1; end end r=normrnd(0.05/253,0.23/sqrt(253),1,n); % generate n random jumps y=log(1.0E6)+cumsum(r); minX=min(y); % minmum return over next n jumps below(i)=sum(minXlog(950000); end pro=mean(below)Output: t=50, pro=0.45% P86-87 (Example 5.1.5) markov chainchushivec0=0 0 1 0 0 0 P=0,1/2,1/2,0,0,0;1/2,0,1/2,0,0,0;1/4,1/4,0,1/4,1/4,0;0,0,1,0,0,0,;0,0,1/2,0,0,1/2;0,0,0,0,1,0jueduivec1=chushivec0*Pjueduivec2=chushivec0*(P2)% find 1 to n absolute-vectorchushivec0=0 0 1 0 0 0;P=0,1/2,1/2,0,0,0;1/2,0,1/2,0,0,0;1/4,1/4,0,1/4,1/4,0;0,0,1,0,0,0,;0,0,1/2,0,0,1/2;0,0,0,0,1,0;n=10t=1/6*ones(1 6);jueduivec=repmat(t,n 1); for k=1:n jueduiveck=chushivec0*(Pk); jueduivec(k,1:6)=jueduiveckend% Comparing two neighbour absolute-vectorsn=70;jueduivecn=chushivec0*(Pn)n=71;jueduivecn=chushivec0*(Pn)% Replace the first distribution, Comparing two neighbour absolute-vectors once morechushivec0=1/6 1/6 1/6 1/6 1/6 1/6;P=0,1/2,1/2,0,0,0;1/2,0,1/2,0,0,0;1/4,1/4,0,1/4,1/4,0;0,0,1,0,0,0,;0,0,1/2,0,0,1/2;0,0,0,0,1,0;n=70;jueduivecn=chushivec0*(Pn)n=71;jueduivecn=chushivec0*(Pn)% 赌博问题模拟(带吸收壁的随机游走:结束1次游走所花的时间及终止状态)a=5; p=1/2;m=0; while m0 & a0 & a15 m=m+1; r=2*binornd(1,p)-1; if r=-1 a=a-1; else a=a+1; endendif a=0 t1(1,n)=m; m1=m1+1;else t2(1,n)=m; m2=m2+1;endendfprintf(The average times of arriving 0 and 10 respectively are %d,%d.n,sum(t1,2)/m1,sum(t2,2)/m2);fprintf(The frequencies of arriving 0 and 10 respectively are %d,%d.n,m1/N, m2/N); % verify: fprintf(The probability of arriving 0 and its approximate respectively are %d,%d.n, (p10*(1-p)5-p5*(1-p)10)/(p5*(p10-(1-p)10), m1/N); fprintf(The expectation of arriving 0 or 10 and its approximate respectively are %d,%d.n,5/(1-2*p)-10/(1-2*p)*(1-(1-p)5/p5)/(1-(1-p)10/p10), (sum(t1,2)+sum(t2,2)/N); % 应用随机过程(04年第一版)P125(example 5.29) 连续时间马尔可夫链PPT P29(例2)Solve the Kolmogorov difference equation,find the transation probabilities输入:clear;syms p00 p01 p10 p11 lamda mu; P=p00,p01;p10,p11;Q=-lamda,lamda;mu,-muP*Q输出:ans = -p00*lamda+p01*mu, p00*lamda-p01*mu -p10*lamda+p11*mu, p10*lamda-p11*mu输入:p00,p01,p10,p11=dsolve(Dp00=-p00*lamda+p01*mu,Dp01=p00*lamda-p01*mu,Dp10=-p10*lamda+p11*mu,Dp11=p10*lamda-p11*mu,p00(0)=1,p01(0)=0,p10(0)=0,p11(0)=1)输出:p00 =mu/(mu+lamda)+exp(-t*mu-t*lamda)*lamda/(mu+lamda)p01 =(lamda*mu/(mu+lamda)-exp(-t*mu-t*lamda)*lamda/(mu+lamda)*mu)/mup10 =mu/(mu+lamda)-exp(-t*mu-t*lamda)*mu/(mu+lamda)p11 =(lamda*mu/(mu+lamda)+exp(-t*mu-t*lamda)*mu2/(mu+lamda)/mu% BPATH1 Brownian path simulation: forend randn(state,100) % set the state of randnT = 1; N = 500; dt = T/N;dW = zeros(1,N); % preallocate arrays .W = zeros(1,N); % for efficiency dW(1) = sqrt(dt)*randn; % first approximation outside the loop .W(1) = dW(1); % since W(0) = 0 is not allowedfor j = 2:N dW(j) = sqrt(dt)*randn; % general increment W(j) = W(j-1) + dW(j); end plot(0:dt:T,0,W,r-) % plot W against t xlabel(t,FontSize,16) ylabel(W(t),FontSize,16,Rotation,0)% BPATH2 Brow
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 46445.1-2025影像材料和印刷品耐磨性第1部分:通用摩擦试验方法
- 灌肠相关试题及答案
- 2025年传统手工艺品数字化推广项目可行性研究报告及总结分析
- 2025年食品外卖行业运营可行性研究报告及总结分析
- 2025年城市防灾减灾体系建设可行性研究报告及总结分析
- 2025年社区服务创新平台可行性研究报告及总结分析
- 2025年碳中和目标下的能效管理系统可行性研究报告及总结分析
- 2025年卫生招聘考试之卫生招聘(计算机信息管理)模考模拟试题(全优)
- 2025年数字化媒体广告投放优化实施方案
- 2025年欧盟数据合规协议
- 硬盘质保合同协议
- 2025-2030应急指挥通信系统及子行业应急指挥车行业市场深度调研报告
- 护理学专业职业素养教育
- 混凝土机械知识培训课件
- 《实验室应急预案》专题培训
- 门窗订购合同范本
- 《海洋调查与监测》课件
- 国际合作基本信息表
- 设计师与设计公司合作协议范本3篇
- 血小板减少护理查房课件
- 人员退休欢送会34
评论
0/150
提交评论