普通高等学校招生数学考试江苏卷).doc_第1页
普通高等学校招生数学考试江苏卷).doc_第2页
普通高等学校招生数学考试江苏卷).doc_第3页
普通高等学校招生数学考试江苏卷).doc_第4页
普通高等学校招生数学考试江苏卷).doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

n更多企业学院: 中小企业管理全能版183套讲座+89700份资料总经理、高层管理49套讲座+16388份资料中层管理学院46套讲座+6020份资料国学智慧、易经46套讲座人力资源学院56套讲座+27123份资料各阶段员工培训学院77套讲座+ 324份资料员工管理企业学院67套讲座+ 8720份资料工厂生产管理学院52套讲座+ 13920份资料财务管理学院53套讲座+ 17945份资料销售经理学院56套讲座+ 14350份资料销售人员培训学院72套讲座+ 4879份资料n更多企业学院: 中小企业管理全能版183套讲座+89700份资料总经理、高层管理49套讲座+16388份资料中层管理学院46套讲座+6020份资料国学智慧、易经46套讲座人力资源学院56套讲座+27123份资料各阶段员工培训学院77套讲座+ 324份资料员工管理企业学院67套讲座+ 8720份资料工厂生产管理学院52套讲座+ 13920份资料财务管理学院53套讲座+ 17945份资料销售经理学院56套讲座+ 14350份资料销售人员培训学院72套讲座+ 4879份资料2010年普通高等学校招生全国统一考试(江苏卷)网参考公式:学锥体的体积公式: V锥体=Sh,其中S是锥体的底面积,h是高。一、填空题:本大题共14小题,每小题5分,共70分。请把答案填写在答题卡1、设集合A=-1,1,3,B=a+2,a2+4,AB=3,则实数a=_.2、设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为_.3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ _.4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间5,40中,其频率分布直方图如图所示,则其抽样的100根中,有_根在棉花纤维的长度小于20mm。5、设函数f(x)=x(ex+ae-x)(xR)是偶函数,则实数a=_6、在平面直角坐标系xOy中,双曲线上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是_ 7、右图是一个算法的流程图,则输出S的值是_8、函数y=x2(x0)的图像在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=_9、在平面直角坐标系xOy中,已知圆上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是_ 10、定义在区间上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作PP1x轴于点P1,直线PP1与y=sinx的图像交于点P2,则线段P1P2的长为_。11、已知函数,则满足不等式的x的范围是_。12、设实数x,y满足38,49,则的最大值是 。来源13、在锐角三角形ABC,A、B、C的对边分别为a、b、c,则=_14、将边长为1m正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S的最小值是_二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15、(满分14分) 在平面直角坐标系xOy中,点A(1,2)、B(2,3)、C(2,1)。求以线段AB、AC为邻边的平行四边形两条对角线的长; 设实数t满足()=0,求t的值。16、 (满分14分) 如图,在四棱锥P-ABCD中,PD平面ABCD,PD=DC=BC=1,AB=2,ABDC,BCD=900。求证:PCBC;求点A到平面PBC的距离。17、(本小题满分14分)某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角ABE=,ADE=。(1) 该小组已经测得一组、的值,tan=1.24,tan=1.20,请据此算出H的值;(2) 该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使与之差较大,可以提高测量精确度。若电视塔的实际高度为125m,试问d为多少时,-最大?18、(满分16分)在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F。设过点T()的直线TA、TB与椭圆分别交于点M、,其中m0,。 (1)设动点P满足,求点P的轨迹;(2)设,求点T的坐标; (3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。19、(满分16分)设各项均为正数的数列的前n项和为,已知,数列是公差为的等差数列。 (1)求数列的通项公式(用表示);(2)设为实数,对满足的任意正整数,不等式都成立。求证:的最大值为。20、(16分)设是定义在区间上的函数,其导函数为。如果存在实数和函数,其中对任意的都有0,使得,则称函数具有性质。 (1)设函数,其中为实数。(i)求证:函数具有性质; (ii)求函数的单调区间。(2)已知函数具有性质。给定设为实数,且,若|0,所以对任意的都有,在上递增。 又。当时,且 综合以上讨论,得:所求的取值范围是(0,1)。 或有以下解法:21.A解析 本题主要考查三角形、圆的有关知识,考查推理论证能力。(方法一)证明:连OD,则:ODDC,又OA=OD,DA=DC, 所以DAO=ODA=DCO, DOC=DAO+ODA=2DCO, 所以DCO=300,DOC=600, 所以OC=2OD,即OB=BC=OD=OA,所以AB=2BC。 (方法二)21B解:解析 本题主要考查图形在矩阵对应的变换下的变化特点,考查运算求解能力。满分10分。由题设得 由,可知A1(0,0)、B1(0,-2)、C1(,-2)。计算得ABC面积的面积是1,A1B1C1的面积是,则由题设知:。 所以k的值为2或-2。21 C解析 本题主要考查曲线的极坐标方程等基本知识,考查转化问题的能力。满分10分。解:,圆=2cos的普通方程为:,直线3cos+4sin+a=0的普通方程为:,又圆与直线相切,所以解得:,或。21D解析 本题主要考查证明不等式的基本方法,考查推理论证的能力。满分10分。证明: 因为实数a、b0,所以上式0。即有。 或有以下解法:22 解析 本题主要考查概率的有关知识,考查运算求解能力。解:(1)由题设知,X的可能取值为10,5,2,-3,且 P(X=10)=0.80.9=0.72, P(X=5)=0.20.9=0.18,P(X=2)=0.80.1=0.08, P(X=-3)=0.20.1=0.02。 由此得X的分布列为:X1052-3P0.720.180.080.02(2)设生产的4件甲产品中一等品有件,则二等品有件。 由题设知,解得, 又,得,或。 所求概率为答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192。 23. 解析 本题主要考查余弦定理、数学归纳法等基础知识,考查推理论证的能力与分析问题、解决问题的能力。满分10分。 (方法一)证明:设三边长分别为,是有理数,是有理数,分母为正有理数,又有理数集对于除法的具

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论