多功能智能小车制作毕业设计.doc_第1页
多功能智能小车制作毕业设计.doc_第2页
多功能智能小车制作毕业设计.doc_第3页
多功能智能小车制作毕业设计.doc_第4页
多功能智能小车制作毕业设计.doc_第5页
已阅读5页,还剩62页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

多功能智能小车制作毕业设计目录摘 要 2Abstract 3目 录 4一、作品设计 61、智能小车的作用和意义 72、智能小车的现状 8二、硬件设计 9(一)电源部分91、LM7805简介 111、LM7805稳压电路 13(二)单片机的选择171、主要优势182、振荡器特性183、89S51相对于89C51增加的新功能 184、芯片擦除 19 (三)功能引脚介绍221、 各引脚功能简单介绍23 (四)最小应用设计25三、方案比较与论证27(一)控制模块的选择方案27(二)电机的选择方案27(三)直流电机驱动方案28四、传感部分30(一)红外传感器301、红外传感器的概述 302、传感器的市场前景 32(2) 红外发射管32(三)红外接收管341、红外接收管的简介342、红外接收管的使用35(四)光电耦合35 1、光电耦合的工作原理37 2、具体应用45 (五)选取原则47 (六)光电耦合的作用47 (七)控制电路图49 五、程序设计506、 作品外观照片 647、 结束语 678、 致 谢689、 参考文献 69 一、作品设计制作一智能小车,给小车通上电后,有必要可以手动按下复位开关,在液晶上可以显示小车最初的基本信息。按下启动开关小车开始向前运动,小车前头装有高大约10厘米的红外发射与接收装置,通过这个装置来探测前方有无障碍。当发出的红外线遇到障碍时,红外线被反射回来并被红外接收管接收,并把信传递给单片机系统。单片机做出反应并发出转弯的命令,通过12864中文液晶显示出来,人就可以看到小车遇到了障碍。当小车第一次遇到障碍时,单片机发出向左90度转弯的命令,如这时前方无障碍小车继续前进。小车底部安装3对光电耦合器传感器,通过按键使小车进入寻记功能,同时12864中文液晶显示出来。当小车底部左边的传感器检测到白线时,小车右转。当小车底部右边的传感器检测到白线时,小车左转。当小车底部中间的传感器检测到黑线时,小车左右转直到传感器一直在白线上,小车这样一直寻记下去。同时小车车轮上安装一个光电耦合器,来检测车轮上的黑白线,计算小车行左的距离而且在12864上时时显示。并通过液晶显示小车在运行中的情况。按下停止开关小车停止工作。参考小车外形如图1。 图1 小车外形图(1)1、智能小车的意义和作用 自第一台工业机器人诞生以来,机器人的发展已经遍及机械、电子、冶金、交通、宇航、国防等领域。近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活方式。人们在不断探讨、改造、认识自然的过程中,制造能替代人劳动的机器一直是人类的梦想。 随着科学技术的发展,机器人的感觉传感器种类越来越多,其中视觉传感器成为自动行走和驾驶的重要部件。视觉的典型应用领域为自主式智能导航系统,对于视觉的各种技术而言图像处理技术已相当发达,而基于图像的理解技术还很落后,机器视觉需要通过大量的运算也只能识别一些结构化环境简单的目标。视觉传感器的核心器件是摄像管或CCD,目前的CCD已能做到自动聚焦。但CCD传感器的价格、体积和使用方式上并不占优势,因此在不要求清晰图像只需要粗略感觉的系统中考虑使用接近觉传感器是一种实用有效的方法。 机器人要实现自动导引功能和避障功能就必须要感知导引线和障碍物,感知导引线相当给机器人一个视觉功能。避障控制系统是基于自动导引小车(AVGauto-guide vehicle)系统,基于它的智能小车实现自动识别路线,判断并自动避开障碍,选择正确的行进路线。使用传感器感知路线和障碍并作出判断和相应的执行动作。 该智能小车可以作为机器人的典型代表。它可以分为三大组成部分:传感器检测部分、执行部分、CPU。机器人要实现自动避障功能,还可以扩展循迹等功能,感知导引线和障碍物。可以实现小车自动识别路线,选择正确的行进路线,并检测到障碍物自动躲避。基于上述要求,传感检测部分考虑到小车一般不需要感知清晰的图像,只要求粗略感知即可,所以可以舍弃昂贵的CCD传感器而考虑使用价廉物美的红外反射式传感器来充当。智能小车的执行部分,是由直流电机来充当的,主要控制小车的行进方向和速度。单片机驱动直流电机一般有两种方案:第一,勿需占用单片机资源,直接选择有PWM功能的单片机,这样可以实现精确调速;第二,可以由软件模拟PWM输出调制,需要占用单片机资源,难以精确调速,但单片机型号的选择余地较大。考虑到实际情况,本文选择第二种方案。CPU使用STC89C52单片机,配合软件编程实现。2、智能小车的现状 现智能小车发展很快,从智能玩具到其它各行业都有实质成果。其基本可实现循迹、避障、检测贴片、寻光入库、避崖等基本功能,这几节的电子设计大赛智能小车又在向声控系统发展。比较出名的飞思卡尔智能小车更是走在前列。我此次的设计主要实现循迹避障这两个功能。 二、硬件设计一个单片机应用系统的硬件电路设计包含有两部分内容:一是系统扩展,即单片机内部的功能单元,如ROMRAMI/O口定时/记数器中断系统等能量不能满足应用系统的要求时,必须在片外进行扩展,选择适当的芯片,设计相应的电路。二是系统配置,既按照系统功能要求配置外围设备,如键盘显示器打印机A/DD/A转换器等,要设计合适的接口电路。(一)电源部分电源电路如图2 所示。 图2 电源电路(2)小车采用+9V的直流电供电省去了整流桥电路和滤波电路,通过三端稳压集成电路LM7805得到系统工作的+5V的直流电压,接一个发光二极管指示电源有无正常工作,电源接通时指示灯亮。负极接一个1N4007二极管防止电源插反时烧坏LM7805。 LM7805是常用的三端稳压集成电路,能提供DC 5V的输出电压,内含过流和过载保护电路。只有三条引脚,分别是输入端、接地端和输出端。1脚输入,2脚接地,3脚输出,这种芯片极易发热,当输出电流较大时,LM7805应配上散热板,带散热片时能持续提供1A的电流。它的封装有TO- 220 的标准封装,也有lm9013样子的TO-92封装。我们这里采用TO-220的封装形式的芯片,也是一种比较普遍的封装形式,市场上容易买到。1、 LM7805简介 三端稳压集成电路lm7805。电子产品中,常见的三端稳压集成电路有正电压输出的lm78 系列和负电压输出的lm79系列。顾名思义,三端IC是指这种稳压用的集成电路,只有三条引脚输出,分别是输入端、接地端和输出端。它的样子象是普通的三极管,TO- 220 的标准封装,也有lm9013样子的TO-92封装。用lm78/lm79系列三端稳压IC来组成稳压电源所需的外围元件极少,电路内部还有过流、过热及调整管的保护电路,使用起来可靠、方便,而且价格便宜。该系列集成稳压IC型号中的lm78或lm79后面的数字代表该三端集成稳压电路的输出电压,如lm7806表示输出电压为正6V,lm7909表示输出电压为负9V。 因为三端固定集成稳压电路的使用方便,电子制作中经常采用。在实际应用中,应在三端集成稳压电路上安装足够大的散热器(当然小功率7805IC内部电路图的条件下不用)。当稳压管温度过高时,稳压性能将变差,甚至损坏。 当制作中需要一个能输出1.5A以上电流的稳压电源,通常采用几块三端稳压电路并联起来,使其最大输出电流为N个1.5A,但应用时需注意:并联使用的集成稳压电路应采用同一厂家、同一批号的产品,以保证参数的一致。另外在输出电流上留有一定的余量,以避免个别集成稳压电路失效时导致其他电路的连锁烧毁。 在lm78.、lm79 . 系列三端稳压器中最常应用的是TO-220 和TO-202 两种封装。这两种封装的图形以及内部电路图。 LM7805 封装图(3) LM7805内部电路图 (4) LM7905封装(5) LM7905内部电路图(6)图中的引脚号标注方法是按照引脚电位从高到底的顺序标注的。这样标注便于记忆。引脚为最高电位,脚为最低电位,脚居中。从图中可以看出,不论正压还是负压,脚均为输出端。对于lm78*正压系列,输入是最高电位,自然是脚,地端为最低电位,即脚,如附图所示。对与lm79*负压系列,输入为最低电位,自然是脚,而地端为最高电位,即脚,如上图所示。 LM7805系列集成稳压器的典型应用电路图,是一个输出正5V直流电。 LM7805引脚正确的顺序:1脚接输入,2脚接地,3脚接输出。lm7805典型应用: LM7805稳压电路(7)2、 Lm7805稳压电路LM7805系列集成稳压器的典型应用电路如下图所示,这是一个输出正5V直流电压的稳压电源电路。IC采用集成稳压器7805,C1、C2分别为输入端和输出端滤波电容,RL为负载电阻。当输出电较大时,7805应配上散热板。 +5V直流电压的稳压电源电路(8) 下图为提高输出电压的应用电路。稳压二极管VD1串接在78XX稳压器2脚与地之间,可使输出电压Uo得到一定的提高,输出电压Uo为LM7805稳压器输出电压与稳压二极管VC1稳压值之和。VD2是输出保护二极管,一旦输出电压低于VD1稳压值时,VD2导通,将输出电流旁路,保护7800稳压器输出级不被损坏。 提高输出电压的应用电路(9) 为提高输出电压的应用电路。稳压二极管VD1串接在lm78XX稳压器2脚与地之间,可使输出电压U o得到一定的提高,输出电压U o为78XX稳压器输出电 压与稳压二极管VC1稳压值之和。VD2是输出保护二极管,一旦输出电压低于VD1稳压值时,VD2导通,将输出电流旁路,保护lm7800稳压器输出级不被损坏。 为输出电压可在一定范围内调节的应用电路。由于R1、RP电阻网络的作用,使得输出电压被提高,提高的幅度取决于RP与R1的比值。调节电位器RP,即 可一定范围内调节输出电压。当RP=0时,输出电压Uo等于lm78XX稳压器输出电压;当RP逐步增大时,Uo也随之逐步提高。 为扩大输出电流的应用电路。VT2为外接扩流率管,VT1为推动管,二者为达林顿连接。R1为偏置电阻。该电路最大输出电流取决于VT2的参数。此外,还应注意,散热片总是和最低电位的第脚相连。这样在lm78*系列中,散热片和地相连接,而在lm79*系列中,散热片却和输入端相连接。 7805电参数(10)(二) 单片机的选择对于单片机的选择,可以考虑使用8031与8051系列,由于8031没有内部RAM,系统又需要大量内存存储数据,因而不适用。AT89C51 是美国 ATMEL 公司生产的低功耗,高性能 CMOS8 位单片机,片内含 4kbytes 的可编程的 Flash 只读程序存储器,兼容标准 8051 指令系统及引脚。它集 Flash 程序存储器既可在线编程(ISP),也可用传统方法进行编程,所以低价位 AT89C51单片机可为提供许多高性价比的应用场合,可灵活应用于各种控制领域,对于简单的测温系统已经足够。单片机AT89C51 具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。主要特性如下图-1所示:与MCS-51 兼容4K字节可编程闪烁存储器寿命:1000写/擦循环数据保留时间:10年全静态工作:0Hz-24Hz三级程序存储器锁定128*8位内部RAM32可编程I/O线两个16位定时器/计数器5个中断源 AT89C51单片机引脚图(11)可编程串行通道 低功耗的闲置和掉电模式片内振荡器和时钟电路 1、主要优势:1与MCS-51 兼容 24K字节可编程闪烁存储器 3.寿命:1000写/擦循环4.数据保留时间:10年5全静态工作:0Hz-24Hz6三级程序存储器锁定7128*8位内部RAM832可编程I/O线9两个16位定时器/计数器105个中断源 11可编程串行通道12低功耗的闲置和掉电模式13片内振荡器和时钟电路2、振荡器特性: XTAL1和XTAL2分别为反向放大器的输入和输出。该反向放大器可以配置为片内振荡器。石晶振荡和陶瓷振荡均可采用。如采用外部时钟源驱动器件,XTAL2应不接。有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。3、 89S51相对于89C51增加的新功能:- 新增加很多功能,性能有了较大提升,价格却基本不变,甚至比89C51更低!- ISP在线编程功能,这个功能的优势在于改写单片机存储器内的程序不需要把芯片从工作环境中剥离。是一个强大易用的功能。- 工作频率为33MHz,大家都知道89C51的极限工作频率只有24M,就是说S51具有更高工作频率,从而具有了更快的计算速度。- 具有双工UART串行通道。- 内部集成看门狗计时器,不再需要像89C51那样外接看门狗计时器单元电路。- 双数据指示器。- 电源关闭标识。- 全新的加密算法,这使得对于89S51的解密变为不可能,程序的保密性大大加强,这样就可以有效的保护知识产权不被侵犯。- 兼容性方面:向下完全兼容51全部字系列产品。比如8051、89C51等等早期MCS-51兼容产品。也就是说所有教科书、网络教程上的程序(不论教科书上采用的单片机是8051还是89C51还是MCS-51等等),在89S51上一样可以照常运行,这就是所谓的向下兼容。4、芯片擦除: 整个PEROM阵列和三个锁定位的电擦除可通过正确的控制信号组合,并保持ALE管脚处于低电平10ms 来完成。在芯片擦操作中,代码阵列全被写“1”且在任何非空存储字节被重复编程以前,该操作必须被执行。此外,AT89C51设有稳态逻辑,可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。在闲置模式下,CPU停止工作。但RAM,定时器,计数器,串口和中断系统仍在工作。在掉电模式下,保存RAM的内容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复位为止。串口通讯单片机的结构和特殊寄存器,这是你编写软件的关键。至于串口通信需要用到那些特殊功能寄存器呢,它们是SCON,TCON,TMOD,SCON等,各代表什么含义呢? SBUF数据缓冲寄存器这是一个可以直接寻址的串行口专用寄存器。有朋友这样问起过“为何在串行口收发中,都只是使用到同一个寄存器SBUF?而不是收发各用一个寄存器。”实际上SBUF 包含了两个独立的寄存器,一个是发送寄存,另一个是接收寄存器,但它们都共同使用同一个寻址地址99H。CPU 在读SBUF 时会指到接收寄存器,在写时会指到发送寄存器,而且接收寄存器是双缓冲寄存器,这样可以避免接收中断没有及时的被响应,数据没有被取走,下一帧数据已到来,而造成的数据重叠问题。发送器则不需要用到双缓冲,一般情况下我们在写发送程序时也不必用到发送中断去外理发送数据。操作SBUF寄存器的方法则很简单,只要把这个99H 地址用关键字sfr定义为一个变量就可以对其进行读写操作了,如sfr SBUF = 0x99;当然你也可以用其它的名称。通常在标准的reg51.h 或at89x51.h 等头文件中已对其做了定义,只要用#include 引用就可以了。 SCON 串行口控制寄存器通常在芯片或设备中为了监视或控制接口状态,都会引用到接口控制寄存器。SCON 就是51 芯片的串行口控制寄存器。它的寻址地址是98H,是一个可以位寻址的寄存器,作用就是监视和控制51 芯片串行口的工作状态。51 芯片的串口可以工作在几个不同的工作模式下,其工作模式的设置就是使用SCON 寄存器。它的各个位的具体定义如下: SM0 SM1 SM2 REN TB8 RB8 TI RI SM0、SM1 为串行口工作模式设置位,这样两位可以对应进行四种模式的设置。串行口工作模式设置。SM0 SM1 模式功能波特率 0 0 0 同步移位寄存器 fosc/12 0 1 1 8位UART 可变 1 0 2 9位UART fosc/32 或fosc/64 1 1 3 9位UART 可变 在这里只说明最常用的模式1,其它的模式也就一一略过,有兴趣的朋友可以找相关的硬件资料查看。表中的fosc 代表振荡器的频率,也就是晶振的频率。UART 为(Universal Asynchronous Receiver)的英文缩写。 SM2 在模式2、模式3 中为多处理机通信使能位。在模式0 中要求该位为0。 REM 为允许接收位,REM 置1 时串口允许接收,置0 时禁止接收。REM 是由软件置位或清零。如果在一个电路中接收和发送引脚P3.0,P3.1 都和上位机相连,在软件上有串口中断处理程序,当要求在处理某个子程序时不允许串口被上位机来的控制字符产生中断,那么可以在这个子程序的开始处加入REM=0 来禁止接收,在子程序结束处加入REM=1 再次打开串口接收。大家也可以用上面的实际源码加入REM=0 来进行实验。 TB8 发送数据位8,在模式2 和3 是要发送的第9 位。该位可以用软件根据需要置位或清除,通常这位在通信讯味中做奇偶位,在多处理机通信中这一位则用于表示是地址帧还是数据帧。 RB8 接收数据位8,在模式2 和3 是已接收数据的第9 位。该位可能是奇偶位,地址/数据标识位。在模式0 中,RB8 为保留位没有被使用。在模式1 中,当SM2=0,RB8 是已接收数据的停止位。 TI 发送中断标识位。在模式0,发送完第8 位数据时,由硬件置位。其它模式中则是在发送停止位之初,由硬件置位。TI 置位后,申请中断,CPU 响应中断后,发送下一帧数据。在任何模式下,TI 都必须由软件来清除,也就是说在数据写入到SBUF 后,硬件发送数据,中断响应如中断打开),这时TI=1,表明发送已完成,TI 不会由硬件清除,所以这时必须用软件对其清零。 RI 接收中断标识位。在模式0,接收第8 位结束时,由硬件置位。其它模式中则是在接收停止位的半中间,由硬件置位。RI=1,申请中断,要求CPU 取走数据。但在模式1 中,SM2=1时,当未收到有效的停止位,则不会对RI 置位。同样RI 也必须要靠软件清除。常用的串口模式1 是传输10 个位的,1 位起始位为0,8 位数据位,低位在先,1 位停止位为1。它的波特率是可变的,其速率是取决于定时器1 或定时器2 的定时值(溢出速率)。AT89C51 和AT89C2051 等51 系列芯片只有两个定时器,定时器0 和定时器1,而定时器2是89C52 系列芯片才有的。波特率在使用串口做通讯时,一个很重要的参数就是波特率,只有上下位机的波特率一样时才可以进行正常通讯。波特率是指串行端口每秒内可以传输的波特位数。有一些初学的朋友认为波特率是指每秒传输的字行数,如标准9600 会被误认为每秒种可以传送9600个字节,而实际上它是指每秒可以传送9600 个二进位,而一个字节要8 个二进位,如用串口模式1 来传输那么加上起始位和停止位,每个数据字节就要占用10 个二进位,9600 波特率用模式1 传输时,每秒传输的字节数是960010=960 字节。51 芯片的串口工作模式0的波特率是固定的,为fosc/12,以一个12M 的晶振来计算,那么它的波特率可以达到1M。模式2 的波特率是固定在fosc/64 或fosc/32,具体用那一种就取决于PCON 寄存器中的SMOD位,如SMOD 为0,波特率为focs/64,SMOD 为1,波特率为focs/32。模式1 和模式3 的波特率是可变的,取决于定时器1 或2(52 芯片)的溢出速率。那么我们怎么去计算这两个模 式的波特率设置时相关的寄存器的值呢?可以用以下的公式去计算。 波特率=(2SMOD32)定时器1 溢出速率 上式中如设置了PCON 寄存器中的SMOD 位为1 时就可以把波特率提升2 倍。通常会使用定时器1 工作在定时器工作模式2 下,这时定时值中的TL1 做为计数,TH1 做为自动重装值 ,这个定时模式下,定时器溢出后,TH1 的值会自动装载到TL1,再次开始计数,这样可以不用软件去干预,使得定时更准确。在这个定时模式2 下定时器1 溢出速率的计算公式如下: 溢出速率=(计数速率)/(256TH1) 上式中的“计数速率”与所使用的晶体振荡器频率有关,在51 芯片中定时器启动后会在每一个机器周期使定时寄存器TH 的值增加一,一个机器周期等于十二个振荡周期,所以可以得知51 芯片的计数速率为晶体振荡器频率的1/12,一个12M 的晶振用在51 芯片上,那么51 的计数速率就为1M。通常用11.0592M 晶体是为了得到标准的无误差的波特率,那么为何呢?计算一下就知道了。如我们要得到9600 的波特率,晶振为11.0592M 和12M,定时器1 为模式2,SMOD 设为1,分别看看那所要求的TH1 为何值。代入公式: 11.0592M 9600=(232)(11.0592M/12)/(256-TH1) TH1=250 12M 9600=(232)(12M/12)/(256-TH1) TH1249.49 上面的计算可以看出使用12M 晶体的时候计算出来的TH1 不为整数,而TH1 的值只能取整数,这样它就会有一定的误差存在不能产生精确的9600 波特率。当然一定的误差是可以在使用中被接受的,就算使用11.0592M 的晶体振荡器也会因晶体本身所存在的误差使波特率产生误差,但晶体本身的误差对波特率的影响是十分之小的,可以忽略不计。(三)AT89C51 引脚功能介绍 AT89C51 单片机为40 引脚双列直插式封装,其引脚排列和逻辑符号如图(11)所示:1、各引脚功能简单介绍如下:VCC:供电电压 GND:接地 P0口:P0口为一个8位漏级开路双向I/O口,每个管脚可吸收8TTL门电流。当P1口的管脚写“1”时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FLASH编程时,P0口作为原码输入口,当FLASH进行校验时,P0输出原码,此时P0外部电位必须被拉高。P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入“1”后,电位被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚电位被内部上拉电阻拉高,且作为输入。作为输入时,P2口的管脚电位被外部拉低,将输出电流,这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉的优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入时,由于外部下拉为低电平,P3口将输出电流(ILL),也是由于上拉的缘故。P3口也可作为AT89C51的一些特殊功能口:P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2 INT0(外部中断0)P3.3 INT1(外部中断1)P3.4 T0(记时器0外部输入)P3.5 T1(记时器1外部输入)P3.6 WR (外部数据存储器写选通)P3.7 RD (外部数据存储器读选通)同时P3口同时为闪烁编程和编程校验接收一些控制信号。RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高平时间。ALE / PROG :当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时, ALE只有在执行MOVX,MOVC指令时ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。PSEN:外部程序存储器的选通信号。在由外部程序存储器取址期间,每个机器周期PSEN两次有效。但在访问内部部数据存储器时,这两次有效的PSEN信号将不出现。EA/VPP:当EA保持低电平时,访问外部ROM;注意加密方式1时,EA将内部锁定为RESET;当EA端保持高电平时,访问内部ROM。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。XTAL2:来自反向振荡器的输出。 (四)最小应用系统设计 单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的系统.。对51系列单片机来说,最小系统一般应该包括:单片机、晶振电路、复位电路、按键输入、显示输出等。应用89C51(52)单片机设计并制作一个单片机最小系统,达到如下基本要求:1、具有上电复位和手动复位功能。2、使用单片机片内程序存储器。3、具有基本的人机交互接口。按键输入、LED显示功能。4、具有一定的可扩展性,单片机I/O口可方便地与其他电路板连接。 89C51是片内有ROM/EPROM的单片机,因此,这种芯片构成的最小系统简单可靠。用89C51单片机构成最小应用系统时,只要将单片机接上时钟电路和复位电路即可, 89C51单片机最小系统所示如图3,。由于集成度的限制,最小应用系统只能用作一些小型的控制单元。其应用特点:(1) 有可供用户使用的大量I/O口线。(2) 内部存储器容量有限。(3) 应用系统开发具有特殊性。 最小应用(12) 三、方案比较与论证 (一)控制模块的选择方案方案一:采用FPGA为系统的控制器,FPGA可以实现各种复杂的逻辑功能,模块大,密度高,它将所有器件集成在一块芯片上,减少了体积,提高了稳定性,并且可应用EDA软件仿真、调试,易于进行功能控制。FPGA采用并行的输入输出方式,提高了系统的处理速度,适合作为大规模实时系统的控制核心。通过输入模块将参数输入给FPGA,FPGA通过程序设计控制直流电机运动,但是由于本设计对数据处理的时间要求不高,FPGA的高速处理的优势得不到充分体现,并且由于其集成度高,使其成本偏高,同时由于芯片的引脚较多,实物硬件电路板布线复杂,加重了电路设计和实际焊接的工作。方案二:采用AT89C51单片机进行控制。本设计需要使用的软件资源比较简单,只需要完成数控部分、键盘输入以及显示输出功能。采用AT89C51进行控制比较简单,但是51单片机资源有限,控制输入输出,需要外接8279之类的芯片进行I/O扩展。采用AT89C51单片机,能将相当一部分外围器件结合到一起,使用方便,抗干扰性能提高。(二)电机的选择方案 方案一:采用直流电机控制小车的运动,直流电机具有最优越的调速性能,主要表现在调速方便(可无级调速)、调速范围宽、低速性能好(起动转矩大、起动电流小)、运行平稳、效率高等方面。其缺点就是由于存在机械触点,直流电机容易产生噪声。 方案二:采用步进电机控制小车的爬坡运动,步进电机具有控制简单、定位精确、无积累误差等优点。但它在运行时高速扭矩小、启动频率低、价格较高。基于上述比较,为了方便地对电机进行无级调速,和需要电机带负载能力强的特点,这里我们采用直流变速电机。(三)直流电机驱动选择方案 方案一:使用多个功率放大器件驱动电机 :通过使用不同的放大电路和不同参数的器件,可以达到不同的放大的要求,放大后能够得到较大的功率。但是由于使用的是四相的步进电机,就需要对四路信号分别进行放大,由于放大电路很难做到完全一致,当电机的功率较大时运行起来会不稳定,而且电路的制作也比较复杂。 方案二:使用L298N芯片驱动电机 : L298N芯片可以驱动两个二相电机,也可以驱动一个四相电机,输出电压最高可达50V,可以直接通过电源来调节输出电压;可以直接用单片机的IO口提供信号;而且电路简单,使用比较方便。 为了方便快捷我们选择方案二。 L298N是一款能承受高压大电流的全桥型直流/步进电机驱动器。同过对输入引脚、的高、低不同电压,使步进电机能正反转,让电机根据89C52单片机的控制信号的输出来控制L298N四个输入脚的电压、,从而达到我们所要达到的功能。 【1】其引脚排列如图: L298N引脚排列图(13)【2】电机驱动A/B的控制逻辑如下表所示 图(14)L298N简介L298是ST公司生产的一种高电压、大电流电机驱动芯片。该芯片的主要特点是:工作电压高,最高工作电压可达46V;输出电流大,瞬间峰值电流可达3A,持续工作电流为2A;内含两个H桥的高电压大电流全桥式驱动器,可以用来驱动直流电动机和步进电动机、继电器、线圈等感性负载;采用标准TTL逻辑电平信号控制;具有两个使能控制端,在不受输入信号影响的情况下允许或禁止器件工作;有一个逻辑电源输入端,使内部逻辑电路部分在低电压下工作;可以外接检测电阻,将变化量反馈给控制电路。 四 传感部分(一)红外传感器这个小车运用了2只红外发射管(970nm)和一只红外接收管构成红外传感系统,来检测前方、左前方和右前方的障碍,检测距离范围为1080cm。红外避障传感器利用红外信号遇到障碍物反射的原理,进行有、无障碍物的检测。红外传感器具有一对红外信号发射与接收管。电路如图15。 传感电路(15)1、红外传感器概述红外技术发展到现在,已经为大家所熟知,这项技术在现代科技、国防科技和工农业科技等领域得到了广泛的应用。红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量;(2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪;(3)热成像系统,可产生整个目标红外辐射的分布图像;(4)红外测距和通信系统;(5)混合系统,是指以上各类系统中的两个或者多个的组合。 红外传感器根据探测机理可分成为:光子探测器(基于光电效应)和热探测器(基于热效应)。(1)待测目标目前,全球的传感器市场在不断变化的创新之中呈现出快速增长的趋势。有关专家指出,传感器领域的主要技术将在现有基础上予以延伸和提高,各国将竞相加速新一代传感器的开发和产业化,竞争也将日益激烈。根据待侧目标的红外辐射特性可进行红外系统的设定。 (2)大气衰减待测目标的红外辐射通过地球大气层时,由于气体分子和各种气体以及各种溶胶粒的散射和吸收,将使得红外源发出的红外辐射发生衰减。 (3)光学接收器它接收目标的部分红外辐射并传输给红外传感器。相当于雷达天线,常用是物镜。(4)辐射调制器对来自待测目标的辐射调制成交变的辐射光,提供目标方位信息,并可滤除大面积的干扰信号。又称调制盘和斩波器,它具有多种结构。 (5)红外探测器这是红外系统的核心。它是利用红外辐射与物质相互作用所呈现出来的物理效应探测红外辐射的传感器,多数情况下是利用这种相互作用所呈现出的电学效应。此类探测器可分为光子探测器和热敏感探测器两大类型。 (6)探测器制冷器由于某些探测器必须要在低温下工作,所以相应的系统必须有制冷设备。经过制冷,设备可以缩短响应时间,提高探测灵敏度。 (7)信号处理系统将探测的信号进行放大、滤波,并从这些信号中提取出信息。然后将此类信息转化成为所需要的格式,最后输送到控制设备或者显示器中。 (8)显示设备这是红外设备的终端设备。常用的显示器有示波器、显像管、红外感光材料、指示仪器和记录仪等。 依照上面的流程,红外系统就可以完成相应的物理量的测量。红外系统的核心是红外探测器,按照探测的机理的不同,可以分为热探测器和光子探测器两大类。下面以热探测器为例子来分析探测器的原理。 热探测器是利用辐射热效应,使探测元件接收到辐射能后引起温度升高,进而使探测器中依赖于温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。多数情况下是通过热电变化来探测辐射的。当元件接收辐射,引起非电量的物理变化时,可以通过适当的变换后测量相应的电量变化。 图上所示为欧姆龙公司生产的漫反射式和对射式光电传感器,这两种传感器主要用于事件检测和物体定位。图中的红灯和绿灯表示传感器的状态。 红外传感器已经在现代化的生产实践中发挥着它的巨大作用,随着探测设备和其他部分的技术的提高,红外传感器能够拥有更多的性能和更好的灵敏度。2、 传感器市场发展前景咨询公司INTECHNOCONSULTING的传感器市场报告显示,2008年全球传感器市场容量为506亿美元,预计2010年全球传感器市场可达600亿美元以上。调查显示,东欧、亚太区和加拿大成为传感器市场增长最快的地区,而美国、德国、日本依旧是传感器市场分布最大的地区。就世界范围而言,传感器市场上增长最快的依旧是汽车市场,占第二位的是过程控制市场,看好通讯市场前景。 一些传感器市场比如压力传感器、温度传感器、流量传感器、水平传感器已表现出成熟市场的特征。流量传感器、压力传感器、温度传感器的市场规模最大,分别占到整个传感器市场的21%、19%和14%。传感器市场的主要增长来自于无线传器、MEMS(Micro-Electro-MechanicalSystems,微机电系统)传感器、生物传感器等新兴传感器。其中,无线传感器在2007-2010年复合年增长率预计会超过25%。新技术的发展将重新定义未来的传感器市场,比如无线传感器、光纤传感器、智能传感器和金属氧化传感器等新型传感器的出现与市场份额的扩大。(二)红外发射管 简介:产生或放大高频功率的静电控制电子管,有时也称振荡管。用于音频或开关电路中的发射管称调制管。发射管是无线电广播、通信、电视发射设备和工业高频设备中的主要电子器件 发射管外形图(16) 本设计采用这种发射管发射特定频率(38KHz)的红外信号,这样发出特定频率的红外线可以有效的避免外界或自然光的干扰,也可以增加发射距离。使小车能准确判断发射回来的红外线,做出准确的判断。本设计通过程序模拟来完成频率发射,给fas这个Io口一定频率的脉冲接Q1、Q2三级管基极,发射极接着发射管,三级管接收到脉冲导通,发射管发出相应频率的红外线, 也可通过硬件设计来获得频率脉冲,可以通过555芯片够成的震荡电路调节来获得,或通过CD4069非门芯片构成的脉冲自激电路、或三极管构成的自激震荡电路来调节获得,这里就不做详解。1、技术指标 频率一般在30兆赫以下,输出功率在1919年为2千瓦以下,1930年达300千瓦,70年代初已超过1000千瓦,效率高达80以上。发射管工作频率提高时,输出功率和效率都会降低,因此1936年首次实用的脉冲雷达工作频率仅28兆赫,80年代则已达 400兆赫以上。40年代电视发射管的工作频率为数十兆赫,而80年代初,优良的电视发射管可在1000兆赫下工作,输出功率达输出功率和工作频率是发射管的基本技术指标。广播、通信和工业设备的发射管,工作20千瓦,效率为40。平面电极结构的小功率发射三极管可在更高的频率下工作。 发射管多采用同心圆筒电极结构。阴极在最内层,向外依次为各个栅极和阳极。图中,自左至右为阴极、第一栅、第二栅、栅极阴极组装件和装入阳极后的整个管子。 中小功率发射管多采用间热式氧化物阴极。大功率发射管一般采用碳化钍钨丝阴极,有螺旋、直条或网笼等结构形式。图为网笼式阴极。栅极多用钼丝或钨丝绕制,或用钼片经电加工等方法制造。栅极表面经镀金(或铂)或涂敷锆粉处理等,以降低栅极电子发射,使发射管稳定工作。用气相沉积方法制造的石墨栅极,具有良好的性能。 发射管阳极直流输入功率转化为高频输出功率的部分约为75,其余25成为阳极热损耗,因此对发射管的阳极必须进行冷却。中小功率发射管的阳极采取自然冷却方式,用镍、钼或石墨等材料制造,装在管壳之内,工作温度可达 600。大功率发射管的阳极都用铜制成,并作为真空密封管壳的一部分,采用各种强制冷却方式。各种冷却方式下每平方厘米阳极内表面的散热能力为:水冷100瓦;风冷30瓦;蒸发冷却250瓦;超蒸发冷却1000瓦以上,80年代已制成阳极损耗功率为1250千瓦的超蒸发冷却发射管。发射管也常以冷却方式命名,如风冷发射管、水冷发射管和蒸发冷却发射管。 发射管管壳用玻璃或陶瓷制造。小功率发射管内使用含钡的吸气剂;大功率发射管则采用锆、钛、钽等吸气材料,管内压强约为10的负五次方帕量级。 发射管寿命取决于阴极发射电子的能力。大功率发射管寿命最高记录可达8万小时。发射四极管的放大作用和输出输入电路间的隔离效果优于三极管,应用最广。工业高频振荡器普遍采用三极管。五极管多用在小功率范围中。(三)红外接收管1、接收管简介 接收管在电子行业已经广泛应用,最常用的就是红外线接收管,是配对红外线接收管使用的,大多采用无色透明树脂封装或黑色、淡蓝色树脂封装三种形式,无色透明树脂封装的管子,可以透过树脂材料观察,管芯下有一个浅盘,它是用磷化镓、磷砷化镓材料制成,体积小,正向驱动接收光电信号。接收管外形图(17) 本设计采用普通的红外接收管代替了1838B,构建外围电路来模拟1838B,抗干扰能力可能不及1838B效果显著。我们通过调节可变电阻来调节灵敏度。当接收管接收到红外线,通过调节可变电阻调节基极的电流。当Q4导通并在Q4三极管集极采集到信号。反应给单片机控制系统,单片机就发出相应的指令。2、接收管的使用 接收管在工作过程中其各项参数均不得超过极限值,因此在代换选型时应当注意原装管子的型号和参数,不可随意更换。另外,也不可任意变更接收管的限流电阻。由于红外光波长的范围相当宽,故发射管必须与接收管配对使用,否则将影响遥控的灵敏度,甚至造成失控。因此在代换选型时,要务必关注其所辐射红外光信号的波长参数。(四)光电耦合 光耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论