微积分在建筑中的应用.doc_第1页
微积分在建筑中的应用.doc_第2页
微积分在建筑中的应用.doc_第3页
微积分在建筑中的应用.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

微积分在建筑专业中的作用以及有关概念和应用的数学分支。它是数学的一个基础学科。其内容主要包括:极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。极限:学习微积分学,首要的一步就是要理解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。所以为了要利用代数处理代表无限的量,于是精心构造了“极限”的概念。微分学:微分学研究函数的导数与微分及其在函数研究中的应用。它是是建立在实数、函数、极限、连续性等一组基本概念之上的。通过求微分,使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学:积分学(integral calculus)数学分析的分支学科。即研究各种积分(理论、计算和应用)以及它们之间的关系的学科。主要分为定积分和不定积分两种,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。其他的还有重积分、曲线积分、曲面 积分和各种情形下的反常积分。这些都是定积分的推广。微积分一般可以解决如下问题:(1)运动中速度与距离的互求问题;(2)求曲线的切线问题;(3)求不规则物体的长度、面积、体积、与重心问题等;(4)通过微分或者积分求曲线和曲面的极大值、极小值、最大值和最小值问题。通过微积分,可以求出某个问题的局部最优解或者全局最优解。楼主可以想象一下,我们在中学学到的数学很多都是用于求解规则、简单的图形和问题,但是对于不规则、复杂的问题和图形我们应该如何求解呢?当然并不是所有问题都可以用数学函数来表示,但是针对某些较为特殊的问题,我们可以通过高等数学建立数学模型,当然现在的模型绝对不像中学那么简单。如:金融股票问题、房地产开发和销售问题、销售市场的供求问题等等,不胜枚举。这样的问题影响我们制定方案和决策的因素有很多,那么我们通过设定每一种因素为一个变量,再根据统计学或者随机模型建立一个较为理想的数学模型,用来估测和描述现实生活中较为复杂的问题。而微积分就提供了解决这些问题的一种方法。1、在工程造价里的作用1.1.1 边际需求与边际供给设需求函数Q=f(p)在点p处可导(其中Q为需求量,P为商品价格),则其边际函数Q=f(p)称为边际需求函数,简称边际需求。类似地,若供给函数Q=Q(P)可导(其中Q为供给量,P为商品价格),则其边际函数Q=Q(p)称为边际供给函数,简称边际供给。1.1.2 边际成本函数总成本函数C=C(Q)=C0+C1(Q);平均成本函数=(Q)=C(Q)Q;边际成本函数C=C(Q)C(Q0)称为当产量为Q0时的边际成本,其经济意义为:当产量达到Q0时,如果增减一个单位产品,则成本将相应增减C(Q0)个单位。1.1.3 边际收益函数总收益函数R=R(Q);平均收益函数=(Q);边际收益函数R=R(Q)R(Q0)称为当商品销售量为Q0时的边际收益。其经济意义为:当销售量达到Q0时,如果增减一个单位产品,则收益将相应地增减R(Q0)个单位。1.1.4 边际利润函数利润函数L=L(Q)=R(Q)-C(Q);平均利润函数;=(Q)边际利润函数L=L(Q)=R(Q)-C(Q).L(Q0)称为当产量为Q0时的边际利润,其经济意义是:当产量达到Q0时,如果增减一个单位产品,则利润将相应增减L(Q0)个单位。例1 某企业每月生产Q(吨)产品的总成本C(千元)是产量Q的函数,C(Q)=Q2-10Q+20。如果每吨产品销售价格2万元,求每月生产10吨、15吨、20吨时的边际利润。解:每月生产Q吨产品的总收入函数为:R(Q)=20QL(Q)=R(Q)-C(Q)=20Q-(Q2-1Q+20)=-Q2+30Q-20L(Q)=(-Q2+30Q-20)=-2Q+30则每月生产10吨、15吨、20吨的边际利润分别为 L(10)=-210+30=10(千元/吨);L(15)=-215+30=0(千元/吨);L(20)=-220+30=-10(千元/吨);以上结果表明:当月产量为10吨时,再增产1吨,利润将增加1万元;当月产量为15吨时,再增产1吨,利润则不会增加;当月产量为20吨时,再增产1吨,利润反而减少1万元。显然,企业不能完全靠增加产量来提高利润,那么保持怎样的产量才能使企业获得最大利润呢?1.2 弹性在经济分析中的应用1.2.1 弹性函数设函数y=f(x)在点x处可导,函数的相对改变量yy=f(x+x)-f(x)y与自变量的相对改变量xx之比,当x0时的极限称为函数y=f(x)在点x处的相对变化率,或称为弹性函数。记为EyExEyEx=limx0yyxx=limx0yxxy=f(x)xf(x)在点x=x0处,弹性函数值Ef(x0)Ex=f(x0)xf(x0)称为f(x)在点x=x0处的弹性值,简称弹性。EExf(x0)%表示在点x=x0处,当x产生1%的改变时,f(x)近似地改变EExf(x0)%。1.2.2 需求弹性经济学中,把需求量对价格的相对变化率称为需求弹性。 对于需求函数Q=f(P)(或P=P(Q)),由于价格上涨时,商品的需求函数Q=f(p)(或P=P(Q))为单调减少函数,P与Q异号,所以特殊地定义,需求对价格的弹性函数为(p)=-f(p)pf(p) 例2 设某商品的需求函数为Q=e-p5,求(1)需求弹性函数;(2)P=3,P=5,P=6时的需求弹性。解:(1)(p)=-f(p)pf(p)=-(-15)e-p5.pe-p5=p5;(2)(3)=35=0.6;(5)=55=1;(6)=65=1.2(3)=0.61,说明当P=6时,价格上涨1%,需求减少1.2%,需求变动的幅度大于价格变动的幅度。1.2.3 收益弹性收益R是商品价格P与销售量Q的乘积,即R=PQ=Pf(p)R=f(p)+pf(p)=f(p)(1+f(p)pf(p)=f(p)(1-)所以,收益弹性为EREP=R(P).PR(P)=f(p)(1-)ppf(p)=1- 这样,就推导出收益弹性与需求弹性的关系是:在任何价格水平上,收益弹性与需求弹性之和等于1。(1)若0价格上涨(或下跌)1%,收益增加(或减少)(1-)%;(2)若1,则EREP0,n0,p0),(1)问每批生产多少单位时,使平均成本最小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论