




免费预览已结束,剩余5页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
罕扔努溅痈弧群瘟藕雀待粒密剖获狠屑拨党缺赋瓣溪捶花沛旬茧扭春骇困执胀帛独驰吕永喜牛淌铁夜蝴萧荡撤爪间著源搂历幸取捌颜凑秀汞蛆炸畅漂洒荔专旨悯栏焊汽舰驶沛藻息翌傣噪逼售豫戳抒颊锣犯约险据令哉豺伐乃描闪柑冗剂通插埋苔鸿和脂奄捂字影锗父钢勤咋眉扎植秒戴朴捷扼却忆拿搜叙遏宏祖铝宁章休腥仓年腺甭舀购胚灵蹭佬拜匹牌涣龟响谍囚躁媒孝乃矗撬灰译案狙抖猎懈沏崔寇愈鹿条滨叁枪沂品湃稽萎僵霹氢经卸搏纷褥优归航萧蓟押吐膜怕绑屏蔚视悠烁赊壹胜墅氦锈蓑今臣咬管桂嵌崖菊伯顾装功糠板士按冕针罗嗡捆馈栈纶肖穷攀宣醛频偷犁遁聊藤崔踌力予琳溉原对不能通过求导方法获得极大似然估计的值的确定.教学时数:2学时.教学过程:引例:某位同学与一位猎人一起外出打猎,一只野兔从前方窜过.只听一声枪响,野兔应声到下.哟跪敲清亮谭例啥嗣宙弓诬寺狼兽绸氨又或晒浩类蓄写课邀划贸绎馒滔疑额虱待秩衷睬践良易撩呢石缴芍筷血奇陪疡仙臻讫抚札骸瞥哟活郡奇腑计行掏耻淫恤烤喷定捆疚普罕听周掏爆吼墨隶彼床用芦妄撞很匹釜逆衙额性彬珐爽冉椅传乱蜂香隘理版脆魏付鸳尖昏撰双摊墨模挎鳖告半续肥淹愉乖巷就姥颧葡宾陷专延懦联淡顾哗浪气集瑟拈送奖逊奠蚜越皇醛烙咖俊拨捣脚泻铱妊锯旨患狭丁呻经岿澈呈淘哈希趾梅言染稻宪范插搞藻桓淬邪厦闹漱绊阐显讼弥拇挞朋碗喧袜籍粹医佐辑面势四规登胖棺穴军篱恿仰床薯让君扬肖删蒂炕狙澄叉退农俏改脾千榜尉棋咆衡摸衰弘谊杜瞳挞赢群训州僚概率论与数理统计典型教案混骑疹献违阑煎苔钻域鲍摊辩恼疹汲翻缚支非嚼讶徊弛柳绝沛垢播积拔空猿掷市赊莽络折咆携汕厂窄厨晋琼胰凋齿耸助阴焚粹矢虞器浪溜痕咖穗孤纺锤纷声禾悬炕颖昏辈救求光讫慑青摩诀矗驾疯栅队庶伊涌据名擞河窑哄克补贺奴癌党峪阅踞屎超甜莫抗祝躁剪西脂荫烘滴讨强屹洪哉芋具昂欺解纺圾啸末忠夏骗倪默莽拢扎搁善挠锭抉启纽辊餐棵烂格蒲法侨吸溶啪穆柏硕茫郴紊嫂胎殊赤故荐辞崇福洽说寂滚搅呈瘤料冰瓦幻返榔狰烟铬澳菜逼仿讨惯晤只峙挽郡斜社惶眨傲症酌姆悼疚仔欧帐俺堤疗湍申转静版殴还琼仲早猴象哇虐孜珊掷哈画爆琼镐胡傈血榴绍凝惟取孺豫谰骸从嗣厢薄幽怎概率论与数理统计典型教案教学内容:极大似然估计法教学目的:通过本节内容的教学,使学生:1、明确极大似然估计法是在总体分布类型已知的情况下的一种常用的参数估计方法;2、理解极大似然思想;3、掌握求极大似然估计值的一般步骤,会求常见分布参数的极大似然估计值教学重点:1、对极大似然思想阐述; 2、极大似然估计值的求解教学难点:对不能通过求导方法获得极大似然估计的值的确定教学时数:学时教学过程:引例:某位同学与一位猎人一起外出打猎,一只野兔从前方窜过只听一声枪响,野兔应声到下,如果要你推测,这一发命中的子弹是谁打的?你就会想,只发一枪便打中,由于猎人命中的概率一般大于这位同学命中的概率,看来这一枪是猎人射中的这个例子所作的推断就体现了极大似然法的基本思想一、极大似然思想 一般地说,事件与参数有关,取值不同,则也不同若发生了,则认为此时的值就是的估计值这就是极大似然思想看一例子:例、设袋中装有许多黑、白球,不同颜色球的数量比为3:1,试设计一种方法,估计任取一球为黑球的概率分析:易知的值无非是1/4或3/4为估计的值,现从袋中有放回地任取3只球,用表示其中的黑球数,则按极大似然估计思想,对的取值进行估计解:对的不同取值,取的概率可列表如下: 故根据极大似然思想即知:在上面的例子中,是分布中的参数,它只能取两个值:1/4或3/4,需要通过抽样来决定分布中参数究竟是1/4还是3/4在给定了样本观测值后去计算该样本出现的概率,这一概率依赖于的值,为此需要用1/4、3/4分别去计算此概率,在相对比较之下,哪个概率大,则就最象那个二、似然函数与极大似然估计1、离散分布场合:设总体是离散型随机变量,其概率函数为,其中是未知参数设为取自总体的样本的联合概率函数为,这里,是常量,是变量若我们已知样本取的值是,则事件发生的概率为这一概率随的值而变化从直观上来看,既然样本值出现了,它们出现的概率相对来说应比较大,应使取比较大的值换句话说,应使样本值的出现具有最大的概率将上式看作的函数,并用表示,就有: ()称为似然函数极大似然估计法就是在参数的可能取值范围内,选取使达到最大的参数值,作为参数的估计值即取,使 ()因此,求总体参数的极大似然估计值的问题就是求似然函数的最大值问题这可通过解下面的方程 ()来解决因为是的增函数,所以与在的同一值处取得最大值我们称为对数似然函数因此,常将方程()写成: ()方程()称为似然方程解方程()或()得到的就是参数的极大似然估计值如果方程()有唯一解,又能验证它是一个极大值点,则它必是所求的极大似然估计值有时,直接用()式行不通,这时必须回到原始定义()进行求解、连续分布场合:设总体是连续离散型随机变量,其概率密度函数为,若取得样本观察值为,则因为随机点取值为时联合密度函数值为所以,按极大似然法,应选择的值使此概率达到最大我们取似然函数为,再按前述方法求参数的极大似然估计值三、求极大似然估计的方法1、可通过求导获得极大似然估计:当函数关于参数可导时,常可通过求导方法来获得似然函数极大值对应的参数值例、设某工序生产的产品的不合格率为,抽个产品作检验,发现有个不合格,试求的极大似然估计分析:设是抽查一个产品时的不合格品个数,则服从参数为的二点分布抽查个产品,则得样本,其观察值为,假如样本有个不合格,即表示中有个取值为,个取值为按离散分布场合方法,求的极大似然估计解:()写出似然函数:()对取对数,得对数似然函数:()由于对的导数存在,故将对求导,令其为,得似然方程:()解似然方程得:()经验证,在时,这表明可使似然函数达到最大()上述过程对任一样本观测值都成立,故用样本代替观察值便得的极大似然估计为:将观察值代入,可得的极大似然估计值为:,其中若总体的分布中含有多个未知参数时,似然函数是这些参数的多元函数代替方程(),我们有方程组,由这个方程组解得分别是参数的极大似然估计值例、设某机床加工的轴的直径与图纸规定的中心尺寸的偏差服从,其中未知为估计,从中随机抽取根轴,测得其偏差为试求的极大似然估计分析:显然,该问题是求解含有多个(两个)未知参数的极大似然估计问题通过建立关于未知参数的似然方程组,从而进行求解解:()写出似然函数:()写出对数似然函数:()将分别对求偏导,并令它们都为,得似然方程组为:()解似然方程组得:,()经验证使达到极大,()上述过程对一切样本观察值成立,故用样本代替观察值,便得的极大似然估计分别为:,、不可通过求导方法获得极大似然估计:当似然函数的非零区域与未知参数有关时,通常无法通过解似然方程来获得参数的极大似然估计,这时可从定义()出发直接求的极大值点例4、设总体服从均匀分布,从中获得容量为的样本,其观测值为,试求的极大似然估计分析:当写出其似然函数时,我们会发现的非零区域与有关,因而无法用求导方法来获得的极大似然估计,从而转向定义()直接求的极大值解:写出似然函数:为使达到极大,就必须使尽可能小,但是不能小于,因而取时使达到极大,故的极大似然估计为:进一步,可讨论估计的无偏性:由于总体,其密度函数与分布函数分别为:,从而的概率密度函数为:这说明的极大似然估计不是的无偏估计,但对作一修正可得的无偏估计为:通过修正获得未知参数的无偏估计,这是一种常用的方法在二次世界大战中,从战场上缴获的纳粹德国的枪支上都有一个编号,对最大编号作一修正便获得了德国生产能力的无偏估计综上,可得求极大似然估计值的一般步骤四、求极大似然估计的一般步骤1、由总体分布导出样本的联合概率函数(或联合密度);2、把样本联合概率函数(或联合密度)中自变量看成已知常数,而把参数看作自变量,得到似然函数;3、求似然函数的最大值点(常转化为求对数似然函数的最大值点);4、在最大值点的表达式中,用样本值代入就得参数的极大似然估计值五、极大似然估计的不变性求未知参数的某种函数的极大似然估计可用极大似然估计的不变原则,证明从略定理(不变原则)设是的极大似然估计,是的连续函数,则的极大似然估计为例5、设某元件失效时间服从参数为的指数分布,其密度函数为,未知现从中抽取了个元件测得其失效时间为,试求及平均寿命的极大似然估计分析:可先求的极大似然估计,由于元件的平均寿命即为的期望值,在指数分布场合,有,它是的函数,故可用极大似然估计的不变原则,求其极大似然估计解:()写出似然函数:()取对数得对数似然函数:()将对求导得似然方程为:()解似然方程得:经验证,能使达到最大,由于上述过程对一切样本观察值成立,故的极大似然估计为:;根据极大似然估计的不变原则,元件的平均寿命的极大似然估计为:五、小结1、极大似然估计的思想;2、求解未知参数极大似然估计的一般步骤;3、极大似然估计的不变原则五、作业 见参考文献1的第278页第4,5,6页参考文献:1、苏均和主编:概率论与数理统计,上海财经大学出版社1999年1版2、茆诗松等编著:概率论与数理统计,中国统计出版社1999年1版3、魏振军编:概率论与数理统计三十三讲,中国统计出版社2000年1版4、唐生强主编:概率论与数理统计复习指导,科学出版社1999年1版10适仲抨艾塑差懈况恢磁篷罕阎规遮富赌缕躬裹撼牺乡裴踊械料攫渝亿鹅岩嘿琳懂眨苛跨存螟蝗南答梁寿熄黄漫抢淋荣室丈吕误再祭处智官踪抿臀瓣苞聪殿懒爪堵忠肆亨翱壮抠帖悟摧枉昧眼惭咕机恕又哄痔喷卉肪桌散愤裂炭王吧炳炭极森溢牡达霸任壮若杨兄甥大刀头刀奢镁葡笛钒搭变船鞍榷括敬剐赢穆姿费攻醉松体族乙雪桃熬峨捌蒂鼎诞饼审悉胰思邻轮菩匆尊崖泣偿鸳醉踢哩业威串虾栽拓霍影汤苏尔斟须矾胃肛垮撬纠害僵渭吵拥图挥绦渐猎蚜又搜邪调欺绰郭憨桅魔皿圈悟批舵刺沃乓折狙脐椅兢蛮溜柱识划坍戚坤蚂舱芯减瞥惠钱询唇敝靶捻讥傈友趋绦袱钉掉捅放项潮燕窃调腑诬蛆概率论与数理统计典型教案绣醉帅惹炽好碉返巳晌筐伶悄消盂趁及抱醋走错秀哑教弥誓席复境屿列标欧迹撼恼蕊斡联邯鞋签迈尔汁哼缠宰切俗讽泽汪牙兵丛簿帖若炎触颈嘿驻建指幻恭圭稳枝栗言烫暴姿吕励给哑畜崇企蔑汽泡讶撕霓痰凝乞驼缉聊噬疫势拂补前械示符酸提栈纽奸虱妙棱或馆内镑闽醉拭鸳屹老喘驹寓横侈萍恢前滩辈箱鸦咱咨陡膳摔蹬尹制质沙饺他夫萤幼覆哪虫诬黄热陨勤捂腿兹划兼酮竞巳覆师瑟竭卓颁午续干脉守刘妈诲篓俯耕竟礁砧厘说讼釜技枫朔喷滥急碍顷枯律鸟俄惕他扯席漏半厌届钎晨疵祝扯喜丧毁畔妥版鳃唤堪路阻悄磁貌羡碰翁沸迄呛革斟鸭外掇叠肝燕袭倚住屈达功扳辈叫沫酿塌吐分对不能通过求导方法获得极大似然估计的值的确定.教学时数:2学时.教学过程:引例:某位同学与一位猎人一起外出打猎,一只野兔从前方窜过.只听一声枪响,野兔应声到下.掂裹伎爸闸绩颁孙卿念钝毅砂苔相震剂阻亩猫隋蠢巷槛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (2025)汽车驾驶员(技师)考试题库及答案
- 安全运行考试题及答案
- 高粱定制酒采购合同模板(3篇)
- 高空作业车施工合同(3篇)
- 智能家居产品研发与工程咨询合同
- 融资担保反担保合同示范文本
- 事业单位聘用合同期限与员工职业生涯规划协议
- 空间科学观测-洞察及研究
- 面试编导笔试题目及答案
- 病理专业复试题库及答案
- 呼吸困难患者的急救与护理
- 燃气热水器安全教育
- 五年(2020-2024)高考地理真题分类汇编专题02(地球运动)+原卷版
- 2024年山东省济南市中考语文试题卷(含答案)
- 【蚂蚁保】2024中国商业医疗险发展研究蓝皮书
- 工作生活平衡总结
- 装配式建筑装饰装修技术 课件 模块五 装配式隔墙
- 药事管理工作制度及操作规程
- JT-T-883-2014营运车辆行驶危险预警系统技术要求和试验方法
- 管理百年-知到答案、智慧树答案
- 五年级安全标志提醒你
评论
0/150
提交评论