


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
余弦定理练习题1在ABC中,如果BC6,AB4,cosB,那么AC等于()A6 B2 C3 D42在ABC中,a2,b1,C30,则c等于()A. B. C. D23在ABC中,a2b2c2bc,则A等于()A60 B45 C120 D1504在ABC中,A、B、C的对边分别为a、b、c,若(a2c2b2)tanBac,则B的值为()A. B. C.或 D.或5在ABC中,a、b、c分别是A、B、C的对边,则acosBbcosA等于()Aa Bb Cc D以上均不对6如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为()A锐角三角形 B直角三角形 C钝角三角形 D由增加的长度决定8在ABC中,b,c3,B30,则a为()A. B2 C.或2 D29已知ABC的三个内角满足2BAC,且AB1,BC4,则边BC上的中线AD的长为_10ABC中,sinAsinBsinC(1)(1),求最大角的度数11已知a、b、c是ABC的三边,S是ABC的面积,若a4,b5,S5,则边c的值为_12在ABC中,sin Asin Bsin C234,则cos Acos Bcos C_.13在ABC中,a3,cos C,SABC4,则b_.15已知ABC的三边长分别是a、b、c,且面积S,则角C_.16三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为_17在ABC中,BCa,ACb,a,b是方程x22x20的两根,且2cos(AB)1,求AB的长18已知ABC的周长为1,且sin Asin Bsin C.(1)求边AB的长;(2)若ABC的面积为sin C,求角C的度数19在ABC中,BC,AC3,sin C2sin A.(1)求AB的值;(2)求sin(2A)的值20在ABC中,已知(abc)(abc)3ab,且2cos Asin BsinC,确定ABC的形状余弦定理答案1在ABC中,如果BC6,AB4,cosB,那么AC等于(A)A6B2C3 D42在ABC中,a2,b1,C30,则c等于(B)A. B.C. D23在ABC中,a2b2c2bc,则A等于(D)A60 B45C120 D1504在ABC中,A、B、C的对边分别为a、b、c,若(a2c2b2)tanBac,则B的值为(D)A. B.C.或 D.或解析:选D.由(a2c2b2)tanBac,联想到余弦定理,代入得cosB.显然B,sinB.B或.5在ABC中,a、b、c分别是A、B、C的对边,则acosBbcosA等于(C)Aa BB Cc D以上均不对6如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为()A锐角三角形 B直角三角形C钝角三角形 D由增加的长度决定解析:选A.设三边长分别为a,b,c且a2b2c2.设增加的长度为m,则cmam,cmbm,又(am)2(bm)2a2b22(ab)m2m2c22cmm2(cm)2,三角形各角均为锐角,即新三角形为锐角三角形8在ABC中,b,c3,B30,则a为()A. B2C.或2 D2解析:选C.在ABC中,由余弦定理得b2a2c22accosB,即3a293a,a23a60,解得a或2.9已知ABC的三个内角满足2BAC,且AB1,BC4,则边BC上的中线AD的长为_解析:2BAC,ABC,B.在ABD中,AD .答案:10ABC中,sinAsinBsinC(1)(1),求最大角的度数解:sinAsinBsinC(1)(1),abc(1)(1).设a(1)k,b(1)k,ck(k0),c边最长,即角C最大由余弦定理,得cosC,又C(0,180),C120.11已知a、b、c是ABC的三边,S是ABC的面积,若a4,b5,S5,则边c的值为_解析:SabsinC,sinC,C60或120.cosC,又c2a2b22abcosC,c221或61,c或.答案:或12在ABC中,sin Asin Bsin C234,则cos Acos Bcos C_.解析:由正弦定理abcsin Asin Bsin C234,设a2k(k0),则b3k,c4k,cos B,同理可得:cos A,cos C,cos Acos Bcos C1411(4)答案:1411(4)13在ABC中,a3,cos C,SABC4,则b_.解析:cos C,sin C.又SABCabsinC4,即b34,b2.答案:215已知ABC的三边长分别是a、b、c,且面积S,则角C_.解析:absinCSabcosC,sinCcosC,tanC1,C45.答案:4516三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为_解析:设三边长为k1,k,k1(k2,kN),则2k4,k3,故三边长分别为2,3,4,最小角的余弦值为.答案:17在ABC中,BCa,ACb,a,b是方程x22x20的两根,且2cos(AB)1,求AB的长解:ABC且2cos(AB)1,cos(C),即cosC.又a,b是方程x22x20的两根,ab2,ab2.AB2AC2BC22ACBCcosCa2b22ab()a2b2ab(ab)2ab(2)2210,AB.18已知ABC的周长为1,且sin Asin Bsin C.(1)求边AB的长;(2)若ABC的面积为sin C,求角C的度数解:(1)由题意及正弦定理得ABBCAC1,BCACAB,两式相减,得AB1.(2)由ABC的面积BCACsin Csin C,得BCAC,由余弦定理得cos C,所以C60.19在ABC中,BC,AC3,sin C2sin A.(1)求AB的值;(2)求sin(2A)的值解:(1)在ABC中,由正弦定理,得ABBC2BC2.(2)在ABC中,根据余弦定理,得cos A,于是sin A.从而sin 2A2sin Acos A,cos 2Acos2 Asin2 A.所以sin(2A)sin 2Acoscos 2Asin.20在ABC中,已知(abc)(abc)3ab,且2cos Asin BsinC,确定ABC的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业内审管理标准化手册
- 2025年太阳油墨考试试题及答案
- 业务需求分析模板与指南
- 钢结构下册考试题及答案
- 2025年中考商丘生物试卷及答案
- 产品技术标准书规范编写指南与示例
- 2025年北交所测试题及答案
- 客户支持工单响应时间分析报告模板
- 云南省保山市腾冲市第八中学2024-2025学年高一上学期期中考试地理试卷(含答案)
- 生物安全防范承诺书9篇
- JCT 2786-2023 水泥工业用V型静态选粉机 (正式版)
- 渔业与人工智能的结合创新
- 《华住酒店集团》课件
- 水电站运行可靠性与风险评估
- 食堂仓库物料出入库管理流程
- 二年级语文上册-第四单元-集体备课+教学设计+教材分析课件
- 2022-2023学年湖南省部分校高一下学期期末基础学科知识竞赛英语试题(原卷版+解析版无听力音频无听力原文)
- 普通高中学生登记表
- 山西美锦华盛化工新材料有限公司化工新材料生产项目环评报告
- 广州某机场维修机库地坪施工方案
- SH/T 0616-1995喷气燃料水分离指数测定法(手提式分离仪法)
评论
0/150
提交评论