




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
16.1二次根式1 一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。2、掌握二次根式有意义的条件。3、掌握二次根式的基本性质:和二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质难点:综合运用性质和。三、学习过程(一)自学导航(课前预习)(1)已知,那么是的_;是的_, 记为_,一定是_数。(2)4的算术平方根为2,用式子表示为 =_;正数的算术平方根为_,0的算术平方根为_;式子的意义是 。(二)合作交流(小组互助)(1)的平方根是 ;(2)一个物体从高处自由落下,落到地面的时间是t(单位:秒)与开始下落时的高度h(单位:米)满足关系式。如果用含h的式子表示t,则t= ;(3)圆的面积为S,则圆的半径是 ;(4)正方形的面积为,则边长为 。思考:, ,,等式子的实际意义.说一说他们的共同特征.定义: 一般地我们把形如()叫做二次根式,叫做_。 。1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?,2、当为正数时指的 ,而0的算术平方根是 ,负数 ,只有非负数才有算术平方根。所以,在二次根式中,字母必须满足 , 才有意义。3、根据算术平方根意义计算 :(1) (2) (3) (4)根据计算结果,你能得出结论: ,其中,4、由公式,我们可以得到公式= ,利用此公式可以把任意一个非负数写成一个数的平方的形式。如()2=5;也可以把一个非负数写成一个数的平方形式,如5=()2.练习:(1)把下列非负数写成一个数的平方的形式:6 0.35(2)在实数范围内因式分解 4a-11(三)展示提升(质疑点拨)例:当x是怎样的实数时,在实数范围内有意义?解:由,得当时,在实数范围内有意义。 练习:1、取何值时,下列各二次根式有意义? 2、(1)若有意义,则a的值为_(2)若在实数范围内有意义,则为( )。A.正数 B.负数 C.非负数 D.非正数3、(1)在式子中,的取值范围是_.(2)已知+0,则_.(3)已知,则= _。 (四)达标检测 (一)填空题:1、 2、若,那么= ,= 。3、当x= 时,代数式有最小值,其最小值是 。4、在实数范围内因式分解:(1)( )2=(x+ )(y- )(2)( )2=(x+ )(y- ) (二)选择题:1、一个数的算术平方根是a,比这个数大3的数为( ) A、 B、 C、 D、 2、二次根式中,字母a的取值范围是( ) A、 al B、a1 C、a1 D、a1 2、已知则x的值为A、 x-3 B、x-3 C、x=-3 D、 x的值不能确定3、下列计算中,不正确的是 ( )。A、3= B、 0.5= C、 D、16.1二次根式2 一、学习目标:1、掌握二次根式的基本性质:2、能利用上述性质对二次根式进行化简.二、学习重点、难点重点:二次根式的性质难点:综合运用性质进行化简和计算。三、学习过程(一)自学导航(课前预习)(1)什么是二次根式,它有哪些性质?(2)二次根式有意义,则x 。(3)在实数范围内因式分解:( )2=(x+ )(y- )(二)合作交流(小组互助)1、计算: 观察其结果与根号内幂底数的关系,归纳得到:当 2、计算: 观察其结果与根号内幂底数的关系,归纳得到:当 3、计算: 当 (三)展示提升(质疑点拨)1、归纳总结将上面做题过程中得到的结论综合起来,得到二次根式的又一条非常重要的性质:2、化简下列各式:(1)、 (2)、 (3)、 (4)、= ()3、请大家思考、讨论二次根式的性质与有什么区别与联系。1、化简下列各式(1) (2) 2、化简下列各式(1) (2)(x-2) (四)达标检测A组1、填空:(1)、-=_.(2)、= (3)a、b、c为三角形的三条边,则_.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 衡水市中医院护理科研规划考核
- 2025江西数字文化产业有限公司诚聘数字文旅部行政实习生1人考前自测高频考点模拟试题及答案详解(典优)
- 衡水市中医院全脑血管造影考核
- 2025广东广州工程技术职业学院招聘一般岗位7人(第一批)考前自测高频考点模拟试题有完整答案详解
- 2025湖南湘潭市韶山思政教育实践中心招聘教师2人考前自测高频考点模拟试题附答案详解(模拟题)
- 沧州市中医院中西医结合治疗考核
- 天津市人民医院皮肤撕裂伤处理考核
- 2025河南南阳市社旗县医疗健康服务集团招聘250人考前自测高频考点模拟试题及一套参考答案详解
- 2025广东深圳市宝安区陶园中英文实验学校招聘初中英语教师2人模拟试卷附答案详解(黄金题型)
- 2025湖州新伦供电服务有限公司招聘45人模拟试卷及答案详解1套
- 【MOOC】计算方法-大连理工大学 中国大学慕课MOOC答案
- 2024年光伏电站运行专业知识题库
- 医疗器设计变更
- 2024年安徽省高考政治试卷(含答案逐题解析)
- “夜经济”背景下喀什古城旅游发展策略
- 2.2《大战中的插曲》课件统编版高中语文选择性必修上册
- 《机械制图(多学时)》中职全套教学课件
- 新教科版小学1-6年级科学需做实验目录
- 初级会计基础知识必背单选题100道及答案解析
- 模拟电子技术基础 第4版黄丽亚课后参考答案
- 2023年高教版中职新版教科书《语文》(基础模块)上册教案全册编制
评论
0/150
提交评论