




已阅读5页,还剩57页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
扇叶 车轮 水轮 动感的旋转世界 新课导入 齿轮 使用扳手拧螺丝 指南针 地球自转 荡秋千 旋转的运动 单杠 翘翘板 花 美丽的图形变换 雪花 紫荆花会徽 这些图案有什么共同特征 车标 知识与能力 了解生活中旋转现象的存在 了解图形旋转的概念 理解并掌握图形旋转中的对应点 对应角 对应线段 旋转中心和旋转角度等基本概念 理解图形的旋转变换是由旋转中心和旋转角所决定的 教学目标 过程与方法 经历探索图形在旋转变换中的变化情况的过程 体会旋转变换对研究图形变化的重要性 情感态度与价值观 经历对生活中旋转图形的观察 讨论 实践操作 使学生感知数学美 培养学生学习数学的兴趣和热爱生活的情感 探索图形旋转的特征 能准确找出旋转前后图形中的对应点 对应线段 对应角 旋转中心 旋转角 学会按一定的角度有规律的旋转 教学重难点 观察 钟表的指针在不停地转动 从12时到4时 时针转动了 度 120 把时针当成一个图形 那么它可以绕着中心固定点转动一定角度 怎样来定义这种图形变换 观察 风车风轮的每个叶片在风的吹动下转动到新的位置 怎样来定义这种图形变换 把叶片当成一个图形 那么它可以绕着中心固定点转动一定角度 把一个图形绕着某点O沿某个方向转动一个角度的图形变换叫做旋转 rotation O P P 旋转中心 旋转角 对应点 如图 四边形ABCD 四边形EFGH都是边长为1的正方形 1 这个图案可以看做是哪个 基本图案 通过旋转得到的 2 请画出旋转中心和旋转角 3 指出经过旋转 点A B C D分别移到什么位置 3 点A 点B 点C 点D移到的位置是 1 基本图案 正方形ABCD顺时针旋转45 得到EFGH 点H 点E 点F 点G 2 旋转中心为O 如图所示 O 旋转角如图所示 还有其它旋转方法吗 若叶片A绕O顺时针旋转到叶片B 则旋转中心是 旋转角是 旋转角等于 度 其中的对应点有 A B C D E F O 抢答 O AOB 60 F与A A与B B与C C与D D与E E与F 杠杆绕支点转动撬起重物 杠杆的旋转中心就 旋转角是 B O B A A AOA O BOB 或 B O A 点A绕 点沿 方向 转动了 度到点B 顺时针 45 把小孩看作一个质点来分析问题 秋千的固定点 旋转的三要素 旋转中心 旋转方向 旋转角度 O B A B A B A C C O 点A 线段AB ABC分别旋转到了什么位置 点A 点A 线段A B A B C 对应点 对应边 对应角 观察 ABO绕点O旋转得到 CDO 则 点D 线段OD 线段AB COD D 点O AOC BOD 观察 在上面两个实验中 ABC在旋转过程中 哪些发生了变化 归纳 各点的位置发生变化 点A 点A 点B 点B 点C 点C 从而 各线段 各角的位置发生变化 OA OA OB OB OC OC 边的相等关系 AB A B BC B C CA C A 对应边相等 在上面两个实验中 ABC在旋转过程中 哪些没有改变 角的相等关系 ABC A B C AOA BOB COC BCA B C A CAB C A B 对应角相等 旋转角 注 图形中每一点都绕着旋转中心旋转了同样大小的角度 对应点到旋转中心的距离相等 对应点与旋转中心所连线段的夹角等于旋转角 旋转前 后的图形全等 图形的旋转是由旋转中心和旋转角决定 图形的旋转不改变图形的形状 大小 只改变图形的位置 旋转的基本性质 有哪些证明方法 证明 ABC A B C AB A B BC B C CA C A ABC A B C BCA B C A CAB C A B SSS SAS ASA AAS 三角形中的边角相等关系 证三角形全等的方法 A O 将A点绕O沿顺时针方向旋转60 作法 1 以O为圆心 OA长为半径画圆 2 连接OA 用量角器或三角板 限特殊角 作出 AOB 与圆周交于B点 3 B点即为所求作 B 点的旋转作法 A O 将线段AB绕O沿顺时针方向旋转60 作法 1 将点A绕点O顺时针旋转60 得点aC 2 将点B绕点O顺时针旋转60 得点D 3 连接CD 则线段CD即为所求作 C B D 线段的旋转作法 已知 OAB 画出 OAB绕点O逆时针旋转100 后的图形 B A O 1 连接OA 2 作 AOC 100 在OC上截取OA OA 4 作 BOD 100 在OD上截OB OB C D 3 连接OB 注 作旋转后的图形可以转化为作旋转后的对应点 图形的旋转作法 5 连接A B 则 OA B 即为所求作 作法 四边形ABCD是边长为1的正方形 且DE ABF是 ADE的旋转图形 1 旋转中心是哪一点 2 旋转了多少度 3 AF的长度是多少 4 如果连结EF 那么 AEF是怎样的三角形 点A 2 ABF是由 ADE旋转而得的 B是D的对应点 DAB是旋转角 答 DAB 90 即旋转了90 3 AD 1 DE AF是AE的对应边 AF AE 勾股定理 对应边相等 4 EAF 90 与旋转角相等 且AF AE 对应边相等 EAF是等腰直角三角形 图形的旋转是由旋转中心和旋转角度决定 旋转的基本性质之一 这两幅图分别经历怎样的旋转 有什么不同 旋转中心不变 改变旋转角 观察 四边形ABCD绕点O顺时针旋转30 30 60 四边形ABCD绕点O顺时针旋转60 图1 图2 这两幅图分别经历怎样的旋转 有什么不同 旋转角不变 改变旋转中心 图3 图4 四边形ABCD绕点O1顺时针旋转30 四边形ABCD绕点O2逆时针旋转30 30 30 因此 选择不同的旋转角 不同的旋转中心 会出现不同的效果 我们可以经过旋转 设计出美丽的图案 归纳 旋转的摩天楼 奔驰车汽车标志 自己动手画一包含旋转的图案 课堂小结 1 旋转的定义 这个定点O称为旋转中心 转动的角称为旋转角 把一个图形绕着某点O沿某个方向转动一个角度的图形变换叫做旋转 对应点到旋转中心的距离相等 对应点与旋转中心所连线段的夹角等于旋转角 旋转前 后的图形全等 图形的旋转是由旋转中心和旋转角决定 图形的旋转不改变图形的形状 大小 只改变图形的位置 2 旋转的基本性质 1 钟表的分针匀速旋转一周需要60分 指出它的旋转中心 经过20分 分针旋转了多少度 随堂练习 2 本图案可以看做是一个菱形通过几次旋转得到的 每次旋转了多少度 也可以看做是二个相邻菱形通过几次旋转得到的 每次旋转了多少度 还可以看做是几个菱形通过几次旋转得到的 每次旋转了多少度 3个1次180 2次120 240 5次 60 120 180 240 300 3个1次60 3 图中是否存在这样的两个三角形 其中一个是通过另一个旋转得到的 4 四边形AOBC绕O点旋转得到四边形DOEF 在这个旋转过程中 1 旋转中心是什么 2 经过旋转 点A B分别移动到什么位置 3 旋转角是什么 4 AO与DO的长有什么关系 BO与EO呢 5 AOD与 BOE有什么大小关系 旋转中心是O 点D和点E的位置 AO DO BO EO AOD BOE AOD和 BOE都是 B A C O D E F 5 如图 O是六个正三角形的公共顶点 正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形 能 看做是一条边 如线段AB 绕O点 按照同一方法连续旋转60 120 180 240 300 形成的 6 ABC绕C点旋转后 顶点A的对应点为点D 试确定顶点B 对应点的位置 以及旋转后的三角形 解 1 连结CD 2 以CB为一边作 BCE 使得 BCE ACD 3 在射线CE上截取CB CB则B 即为所求的B的对应点 4 连结DB 则 DB C就是 ABC绕C点旋转后的图形 A B C D E F 7 如图 DEF是由 ABC绕某一中心旋转一定的角度得到 请你找出这旋转中心 旋转中心在对应点连线的垂直平分线上 O 8 如下图是菊花一叶和中心与圆圈 现以O 为旋转中心画出分别旋转45 90 135 180 225 270 315 的菊花图案 解 1 连结OA 2 以O点为圆心 OA长为半径旋转45 得A 3 依此类推画出旋转角分别为90 135 180 225 270 315 的A A A A A A 4 按菊花一叶图案画出各菊花一叶 那么所画的图案就是绕O点旋转后的图形 9 如图 如果上面的菊花一叶 绕下面的点O 为旋转中心 请同学画出图案 它还是原来的菊花吗 显然 画出后的图案不是菊花 而是另外的一种花了 10 如图所示的方格纸中 将 ABC向右平移8格 再以O为旋转中心逆时针旋转90 画出旋转后的三角形 11 将点阵中的图形绕点O按逆时针方向旋转900 画出旋转后的图形 解 面积不变 理由 设任转一角度 如图所示 在Rt ODD 和Rt OEE 中 ODD OEE 90 DOD EOE 90 BOEOD OD ODD OEE S ODD S OEE S四边形OE BD S正方形OEBD 12 如何作出该图案绕O点按逆时针旋转90 的图形 解 1 连结OA 过O点沿OA逆时针作 AOA 90 在射线OA 上截取OA OA 2 用同样的方法分别求出B C D E F G H的对应点B C D E F G H 3 作出对应线段A B B C C D D E E F F A A G G D D H H A 4 所作出的图案就是所求的图案 13 K是正方形ABCD内一点 以AK为一边作正方形AKLM 使L M在AK的同旁 连接BK和DM 试用旋转的思想说明线段BK与DM的关系 解 四边形ABCD 四边形AKLM是正方形 AB AD AK AM 且 BAD KAM为旋转角且为90 ADM是以A为旋转中心 BAD为旋转角由 ABK旋转而成的 BK DM 14 P是等边 ABC内的一点 把 ABP按不同的方向通过旋转得到 BQC和 ACR 1 指出旋转中心 旋转方向和旋转角度 2 ACR是否可以直接通过把 BQC旋转得到 15 画出 ABC绕点C按顺时针方向旋转120 后的对应的三角形 A B 16 将等边 ABC绕着点O按某个方向旋转90 后得到 A B C O 17 两个边长为1的正方形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度新型环保外墙真石漆施工技术服务合同
- 2025版汽车土石方运输与可持续发展战略合同
- 2025年度农业项目反担保抵押合同
- 2025年度土地居间交易全程服务合同细则
- 2025版高级离婚协议范文9A专项法律咨询合同
- 2025年环保型二手房按揭买卖合同示范文本
- 2025年财务共享服务中心聘请合同
- 2025版聘请专利法律顾问合同
- 聚焦建筑行业:农民工权益保障与2025年用工模式变革下的企业文化建设与创新报告
- 2025版委托保密协议(新材料研发)
- DB37-T 5317-2025《旋挖成孔灌注桩施工技术规程》
- (完整版)保安培训课件
- 个性化医疗决策模型-深度研究
- Oracle财务系统应付账款模块操作手册
- 体检营销话术与技巧培训
- 广东省佛山市顺德区2023-2024学年七年级(上)期末数学试卷(含答案)
- 变配电运维职业技能(中级)等级培训题库
- 矿山隐蔽致灾普查治理报告
- 实心球课件教学课件
- 玻璃体切割手术治疗2型糖尿病视网膜病变专家共识
- 大型养路机械司机(打磨车)高级工技能鉴定考试题库(含答案)
评论
0/150
提交评论