材料制备技术试题及答案.doc_第1页
材料制备技术试题及答案.doc_第2页
材料制备技术试题及答案.doc_第3页
材料制备技术试题及答案.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1机械合金化:金属或合金粉末在高能球磨机中通过粉末颗粒与魔球之间长时间激烈地冲击、碰撞,使粉末颗粒反复产生冷焊、断裂,导致粉末颗粒中原子扩散,从而获得合金化粉末的一种粉末制备技术。2 反应球磨:通过一种球磨化学添加物与金属粉末,诱发低温化学反应,生成了分布均匀的弥散粒子。3 行星球磨机:靠本身强烈的自传和公转,使磨球产生巨大地冲击、球磨作用,使物料粉碎的机器。4搅拌式球磨机:主要由一个静止的球磨筒体和一个装在筒体中心的球磨搅拌器组成,由球磨介质重力及螺旋回转产生的挤压力对物料产生冲击、摩擦和剪切作用,使物料被粉碎。5临界速度:6球磨介质:在机械合金化过程中,工具钢、铬钢、调质钢、不锈钢、轴承钢和WC-Co硬质合金钢是常用的球磨介质材料。7球料比和填充系数:球料比是球磨过程中的重要参数。球料比越大,球磨所需要的时间越短。在高球料比下,磨球个数增加,单位时间内碰撞次数增加,从而转移更多的能量给粉末颗粒,非晶化时间变得更短,同时使粉末温升增加但如果温度升过高,非晶相甚至发生晶化。 机械合金化的填充系数一般是0.5,如果填充系数过大,没有足够的空间使磨球运动,那么球的冲击作用会降低;如果填充系数过小,则机械合金化的产率较低。8工艺控制剂PCA:控制冷焊,可以为固体、液体或气体,多为表面活性剂一类的有机化合物。在球磨时被吸附在粉末表面,降低了冷焊,抑制了结块,并且降低了粉末的表面活性,导致球磨时间缩短或可以球磨得到更细的粉末,但过多的PCA也会影响原子扩散和污染粉末。 其用量决定于:1,粉末颗粒的冷焊性能;2,PCA的化学和热稳定性;3,粉末和球磨介质的用量。9弥散强化合金:按其弥散相的种类可分为氧化物弥散强化合金和碳化物弥散强化合金。10喷射沉积:熔融金属或合金在惰性气氛中借助高压惰性气体或机械离心雾化形成固液两相的颗粒喷射流,并直接喷到较冷基底上,产生碰撞、粘结、凝固而形成沉积物。沉积物可以通过各种致密化加工得到性能优异的材料。22211喷射共沉积:在喷射沉积过程中,把具有一定动量的颗粒增强相喷到雾化液流中,熔融金属和颗粒增强相共同沉积到较冷基底上,从而制备颗粒增强金属基复合材料的一种办法。12反应喷射沉积:将喷射沉积技术与反应合成制备陶瓷粒子技术结合起来,形成共沉积的一种新型制备颗粒增强金属基复合材料的技术。在喷射沉积过程中,金属液体被充分雾化成细小的液滴,从而具有很大的体表面积,在一定的过热条件下,可以为喷射沉积过程中融滴与外加反应剂接触并发生化学反应提供驱动力。23013 金属基复合材料:简称MMCs以其优良的强度、刚度、抗蠕变、耐磨损、低密度、可控膨胀性等综合性能而受到世界工业发达国家的极大重视,其应用遍布汽车、电子、高速列车航空航天等领域。分为非连续体(陶瓷颗粒、晶须或短纤维)增强型和纤维增强型两大类。14 自蔓延高温合成:利用外部提供必要的能量诱发放热化学反应(点燃),这种高放热反应所产生的能量使两种或两种以上物质的化学反应以燃烧波的形式自动蔓延下去,从而合成所需要的材料(粉体或固结体)。15 自蔓延燃烧方式SHS:点燃式,待反应的原料混合物物块的一端点燃反应,反应放出的巨大能量又使邻近材料发生反应。热爆式,将原料混合物块在一定气氛下进行整体加热,使其燃烧反应,反应一旦发生,即停止加热,使物料外部燃烧放出的热量向内部传播使反应进行下去。微播式是从物料内部开始加热并使热量往外扩散从而发生反应,这种办法反应更彻底。16 稳态燃烧:指燃烧过程中火焰以稳定的恒速传播的燃烧模式。17 非稳态燃烧:燃烧过程中火焰的传播速率不为常数的燃烧模式,又可进一步分为振荡燃烧、螺旋燃烧、无秩序燃烧。18 热力学燃烧温度:假定体系没有热损失时体系所能达到的最高燃烧温度,是描述Gibbs反应特征最重要的热力学参量。19 SHS图:分别以胚料的起始温度和稀释剂浓度作为纵坐标和横坐标,根据这两个参数的变化,将燃烧波的传播方式分为两个区域,即稳定蔓延燃烧区和非SHS区。20 SHS烧结:在燃烧过程中发生固相烧结,从而制备具有一定形状和尺寸的零件。该技术,由于反应速率快,反应温度高、成本低,具有特殊的反应机理。反应经过温度剧变的过程,处于亚稳态,粉末烧结活性高。反应中的高温使易挥发的杂质挥发,从而得到较纯净的产物。21 SHS致密: SHS合成产物的一个明显的缺点就是产物孔隙大、疏松、不致密。方法:SHS加压法,SHS挤压法,SHS等静压法,使燃烧过程中发出现液相来致密化。22 SHS熔铸:即在SHS方法下熔铸产生的高温液相可以进行传统的铸造处理,以获得铸锭或铸件。包括两阶段:1由SHS制取高温液相2用铸造方法对液相进行处理。23 SHS焊接:利用SHS反应所放出的热量以及其反应产物来连接受焊母材的技术。在待焊接的两块材料之间填进合适的燃烧反应原理,以一定的压力夹紧待焊材料,待中间原料的燃烧反应过程完成后,即可实现两块材料的焊接。24 蠕变:在一定的温度和一定的外力作用下,材料的形变随时间的推移而逐渐发展的现象。25 应力松弛:在温度恒定、应力保持不变时,材料的应力随时间的延续而逐渐下降的现象。26 黏结剂:一般由结合剂、润滑剂和增塑剂三部分组成。基本功能即增加流动性能和维持坯件形状。满足条件:1成形性好(主要是指喂料的成形性好);2脱脂性好(加热易分解)3脱模性好(坯料脱模后不崩形)4防变形能力好(脱脂后不变形)29 结合剂:粘结粉末,保持坯料具有一定的强度和热流动性能。又分为热塑性(流动性好,容易脱除)和热固性(脱脂后防变形性好)结合剂两种。30 润滑剂和可塑剂:润滑剂主要是增加颗粒间的润滑性,减少摩擦阻力,增加流动性防止注射成形装置和坯料黏结;可塑剂主要是使黏结剂软化。27 脱脂:成形坯在烧结前必须去除体内所含有的黏结剂,该过程即为脱脂。热脱脂、溶剂脱脂、催化脱脂。必须保证黏结剂从坯块的不同位置沿着颗粒之间的微小通道逐渐地排除,而不伤害成形坯的形状和强度。28 维泰克工艺:采用微米级(一般为510um)的金属、非金属、氧化物、碳化物等微细粉末加入热塑性树脂和石蜡并在圆盘剪切混料机上混合,将混合物调制成可塑性状态,然后注射成形,脱脂和烧结制备高密度、高精度粉末冶金零件的工艺。31 混炼:把金属粉末和黏结剂两种不同性质的材料混炼成喂料。32 制粒:把喂料制成类似颗粒状塑料的规格型原料,以便在注射成形机上应用。33 注射成型:将混合的粒料或粉料放入注塑机的料筒内,经过加热、压缩、剪切、混合和输送作用,使物料达到均匀化和塑化的效果,然后借助于柱塞或螺杆像塑化好的混合物施加压力,高温流体变通过;料筒前面的喷嘴和模具的浇道系统注入预先闭合好的低温模腔中,经过冷却定型后,开启模具、顶出制品,得到一定几何形状和精度的制品。34 注射缺陷:孔洞、短射、喷射、变形、飞边、表明起泡、开裂、形成熔接痕和表面下凹、弯曲和尺寸精度差等问题。35 微注射:喂料由微注射成形设备的塑化单元加热到其黏结剂软化温度,并均匀搅拌使熔体性质均一,由抽真空单元将微型腔中的空气抽出,以避免在熔体注射充填过程中,模腔内的空气阻碍流动导致充填欠注及在零件中产生气泡,且由于高温高压作用下空气极度压缩可能使金属粉末氧化。完成微型腔抽真空工序后,必须快速将模具温度升高,保证熔体在未尺度下流动不会过早冷却凝固而引起欠注。注射完毕,为达到缩短生产周期的目的,由模温快速冷系统将模具温度迅速降低,然后动定模分开制品脱模或吸出。1试简述机械合金化的主要工艺参数球磨机转速和球磨时间:球磨机转速越高对粉末施加能量越高;当球磨时间超过所需时间时,粉末污染程度会增加,所以球磨时间最好是恰恰所需要的球磨时间,而不应超过该时间。球磨介质:一般认为大尺寸、高密度的磨球对机械合金化有利,因为重的磨球具有更高的冲击能量。球料比和充填系数:球料比是球磨过程中的重要参数。球料比越大,球磨所需要的时间越短。在高球料比下,磨球个数增加,单位时间内碰撞次数增加,从而转移更多的能量给粉末颗粒,非晶化时间变得更短,同时使粉末温升增加但如果温度升过高,非晶相甚至发生晶化。 机械合金化的填充系数一般是0.5,如果填充系数过大,没有足够的空间使磨球运动,那么球的冲击作用会降低;如果填充系数过小,则机械合金化的产率较低。球磨气氛:粉末在进行机械合金化时,球磨筒要么抽真空,要么充入惰性气体,如氩气或氦气。气氛类型对最终生成相的特性也有影响。工艺控制剂:控制 冷焊,可以加入工艺控制剂(PCA)。球磨温度:决定球磨粉末最终相组成的参数。在机械合金化过程中,非晶的形成涉及粉末之间微扩散偶的形成,接着发生固态非晶反应,这样球磨温度升高提高了非晶化动力。2试简述金属粉末的球磨过程金属粉末在球磨过程中的第一阶段为微锻过程,在这一阶段,颗粒发生变形,但没有发生因焊接而产生的团聚和断裂,最后,由于冷加工,颗粒的变形和脆裂非常严重;第二阶段,在强大聚集力情况下,由于微锻和断裂交替作用,颗粒尺寸不断减小,当颗粒(特别是片状颗粒)被粉碎得较细时,相互间的连接力趋于增加,团粒变得密实;最后阶段,反团聚的球磨力与颗粒间的相互连接力之间达到平衡,从而生成平衡团聚颗粒,这种平衡团聚颗粒的粒度也就是粉碎的极限粒度。3举一类材料为例说明MA的应用(机理 工艺)镍基ODS超合金:氧化物弥散强化的机理是细小粒子能够阻碍位错的运动,增大合金的蠕变抗力。弥散相粒子还可以阻碍再结晶过程,从而在最终退火期间可以促进稳定的大晶粒生成。在高温加载期间,这种粒子可以阻碍晶粒转动和晶界滑移,使合金的高温强度提高。工艺:把一种或数种金属粉末在高能球磨机中混合,反复进行压合和破碎,从而实现合金化和氧化物的均匀弥散分布,并在传统的固溶强化或析出强化的基础上利用氧化物颗粒的弥散强化效果,以获得更优异的高温强度。4简述喷射沉积工艺的基本原理与特点基本原理:熔融金属或合金在惰性气氛中借助高压惰性气体或机械离心雾化形成固液两相的颗粒喷射流,并直接喷到较冷基底上,产生碰撞、粘结、凝固而形成沉积物。沉积物可以通过各种致密化加工得到性能优异的材料。特点:介于铸造冶金IM和粉末冶金PM之间。经济性好,工艺比较简单,生产周期短,效益高。适用性广。产品性能优异,能够得到冷速较高、晶粒细小、无宏观偏析的预成形坯块,经后续加工后,具有优异的性能。5试述喷射沉积过程原理与机制参数232大致分为五个阶段:金属液释放阶段、气体雾化阶段、喷射阶段、沉积阶段及沉积体凝固阶段。安装参数,包括液流管直径、雾化气体类型、雾化器种类及基底的几何形状和结构。在线系数,包括金属熔体的过热度、金属流铝、雾化气体压力、喷射高度和基底(材料、表面质量、温度)的运动方式等。6简述多层喷射沉积工艺及特优点多层喷射沉积是在喷射沉积过程中将装有熔体的坩埚与雾化器一起移动,这种移动装置代替了各种扫描和V形喷嘴,这种移动引起了沉积原理的变化,造成了一种多层扭和沉积组织的产生。特点:冷速高;由于沉积坯为雾化器往复扫描、喷射沉积而成,管坯尺寸可以很厚,并且冷凝速率不受影响;所制复合材料的均匀性好,在制备金属/陶瓷复合材料、梯度材料、互不固溶的双金属材料及其他特殊材料有很大优越性;装置制造成本和沉积坯生产成本低,能连续作业,工艺简单,操作简单,安全可靠,是一种适合工业规模生产的大尺寸近形快速凝固沉积坯吧装置,有望完善实现商业化生产。7试述SHS动力学条件燃烧速率即反应前沿波向前移进的速率;粒子尺寸极大地影响了反应进行程度、反应速率、反应区温度变化、燃烧波速率等;液相,在固固反应中,颗粒之间的有限接触限制了反应物之间的物质交换;粉末原料压实的影响,当易溶组分体积分数与孔隙的体积分数大致相当时,液相可充分与高熔点组分接触,而获得最佳扩展效果;放热率,如果化学成分不符合要求将导致热力学温度的降低,任何多余的反应物和产物都会由于放热的降低,导致热力学温度的降低;气体种类的影响,在高燃烧温度下气体种类的变化可能导致产品中产生空洞等缺陷,甚至会引发爆炸而完全破坏产品结构;气压的影响,SHS固气需要加入不同气体,以生成氮化物、氧化物、氢化物。8SHS过程影响因素原料物性,原料成分配比、原料粒度、原料成分的结构、原料的混料方式以及原料的纯度等;样品压坯质量,燃烧过程外界参数以及外在辅助因素(电场能促进燃烧过程,增大燃烧波速,磁场,重力场)等。9介绍4种常见的SHS技术 SHS烧结:在燃烧过程中发生固相烧结,从而制备具有一定形状和尺寸的零件。该技术,由于反应速率快,反应温度高、成本低,具有特殊的反应机理。反应经过温度剧变的过程,处于亚稳态,粉末烧结活性高。反应中的高温使易挥发的杂质挥发,从而得到较纯净的产物。 SHS致密: SHS合成产物的一个明显的缺点就是产物孔隙大、疏松、不致密。方法:SHS加压法,SHS挤压法,SHS等静压法,使燃烧过程中发出现液相来致密化。 SHS熔铸:即在SHS方法下熔铸产生的高温液相可以进行传统的铸造处理,以获得铸锭或铸件。包括两阶段:1由SHS制取高温液相2用铸造方法对液相进行处理。 SHS焊接:利用SHS反应所放出的热量以及其反应产物来连接受焊母材的技术。在待焊接的两块材料之间填进合适的燃烧反应原

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论