




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
不等式的应用(1)方程根的讨论教案教学目标1能应用不等式的有关知识,对一元二次方程的实根分布进行讨论2借助二次函数的图象进行实根分布的讨论,培养学生数形结合的思想3能将实根分布等价转化为不等式(组)的求解问题,体现等价转化的数学思想教学重点与难点重点:借助二次函数的图象将一元二次方程实根分布的条件等价转化为由方程或不等式组成的条件组难点:寻求实根分布条件的等价转化教学过程设计(一)引入新课师:前阶段我们研究了不等式的性质,不等式的解法以及不等式的证明现在我们一起研究不等式在方程根的讨论问题上的应用(板书:不等式的应用方程根的讨论)师:请同学们思考此题的解法(出示小黑板或投影幻灯片)练习:实数m取何值时,方程x22mx2m230 有:(1)两个正根? (2)一个正根,一个负根?(教师巡视后,发现学生中的不同解法,肯定正确方法,纠正偏差)生乙:(1)由一元二次方程根与系数的关系可知:方程(1)有两个正根的充要条件是:师:本题有多种不同的解法:生甲应用求根公式;生乙应用根与系数的关系(韦达定理)不难看出,方程的实根分布问题的讨论可以等价转化为解不等式(组),但是不等式(组)是否与原命题等价是解题正确与否的关键师:由于一元二次方程,一元二次不等式与二次函数三者有着密切的联系,是否可以考虑应用二次函数的图象与性质?(二)讨论生:一元二次方程的实根是相应的二次函数的图象与x轴的交点的横坐标,讨论一元二次方程实根的分布问题可转化为讨论二次函数的图象与x轴的交点的位置问题师:不妨设y=f(x)=x22mx2m23,这是二次函数,其图象是开口向上的抛物线(如图56),若方程有两个正根,即抛物线y=f(x)与x轴正半轴有两个交点,或与x轴正半轴相切,其充要条件是什么?生:首先判别式0,这样可以保证抛物线与x轴有两个交点,或与x轴相切师:满足0的条件,如图57抛物线与x轴的两个交点,一个在x轴正半轴上,而另一个在x轴负轴上可这两个交点应都在x轴正半轴上生:图56与图57比较发现,抛物线与y轴的交点应在正半轴上,即在y轴上的截距大于0师:如何计算抛物线在y轴上的截距?生:抛物线在y轴上的截距为f(0),因此f(0)0师:比较图56与图58,寻找其差别之处,还应添加什么条件?生:两图象的主要不同之处在于对称轴的位置不同,图56所示抛物线的对称轴在y轴右侧,而图58所示抛物线的对称轴在y轴左侧,因此在条件中应添加对称轴x=m0的条件师:这样我们就得到了抛物线y=f(x)=x22mx2m23与x轴正半轴有两个交点,或与x轴正半轴相切,即方程x22mx2m230,有两个正根的充要条件是:师:若方程有一个正根,一个负根,抛物线与x轴的交点位置又如何?其所对等价条件应考虑几方面?生:若方程有一个正根,一个负根,抛物线y=f(x)与x轴有两个交点,分别位于原点的两侧如图59首先应考虑判别式0,还需考虑抛物线在y轴上的截距小于0,即f(0)0师:当f(0)0时,请同学们试一试抛物线y=f(x)与x轴是否一定有两个交点?并且这两个交点是否一定位于原点的两侧?(要教给学生思考问题的方法,即原命题与其逆否命题是等价命题因此,只须考虑抛物线y=f(x)与x轴没有两个交点(包括无交点和一个交点的两种情况)时,f(0)0是否成立;这两个交点位于原点的同侧或有一点在原点上,f(0)0是否成立这样,学生就可以通过作图,直观得出结论,既省去了繁琐的证明过程,又培养了数形结合的思想,可谓一举两得学生不难得出以下5种图形,(如图510514),从而得出肯定的结论)(板书)师:因此,抛物线y=f(x)=x22mx2m23与x轴有两个交点,且分别位于原点两侧,即方程x22mx2m23=0,有一个正根,一个负根的充要条件师(小结):关于一元二次方程的实根分布问题通常有三种不同的处理方法:(1)应用求根公式法;(2)应用根与系数的关系(韦达定理);(3)应用二次函数的图象与性质(三)巩固(板书)例1 m取何实数值时,关于x的方程x2(m2)x5m=0的两个实根都大于2?(在学生充分思考的前提下,发现错误,在及时分析、纠正错误的同时,使学生分析解决问题的能力得以提高)师:同学中有这样一种作法:解:设方程的两根为x1,x2比较此答案与应用二次函数图象所得答案5m4不符,究竟问题出在哪里?(此时,利用此题训练学生举反例的能力,从而培养学生批判的思维品质)生:取m=54,方程变为x27x10=0,这时有一根为2,不符合题意,因此解法错误(板书)正确解法1:(应用韦达定理)所以原方程两个实根都大于2的充要条件是所以当5m4时,方程的两个实根都大于2正确解法2:(应用二次函数)设f(x)=x2(m2)x5m,如图515原方程两个实根都大于2的充要条师:若m为何实数时,方程的一个实根大于2,另一个实根小于2,又将如何解决呢?(由学生自己解决,教师点评解法)解法1:(利用韦达定理)所以原方程的两个根一个大于2,另一个小于2的充要条件是:(x12)(x22)0解得:m5所以当m5时,方程的一个实很大于2,另一个实根小于2解法2:(应用二次函数)设f(x)=x2(m2)x5m,如图516,原方程一个实根大于2,另一个实根小于2的充要条件是f(2)0,即42(m2)5m0解得 m5所以当m5时,方程的一个实根大于2,另一个实根小于2(板书)例2 已知关于x方程:x22axa=0有两个实根,且满足01,2,求实数a的取值范围师:利用求根公式,将01,2转化为关于a的不等式组,求a的取值范围,计算将会很繁琐而利用根与系数关系进行转化时,很难得到充要条件因此,考虑利用二次函数图象,数形结合寻找问题解决的充要条件设y=f(x)=x22axa,如图517,若方程f(x)=0的两根分别在区间(0,1)和(2,)内,即抛物线y=f(x)与x轴的两个交点在分别位于原点与点(1,0)之间和点(2,0)的右侧,由先前的经验可知,只需考虑f(0),f(1),f(2)的符号,而无需考虑判别式以及对称的位置,因此得出其充要条件为:(板书)解:设f(x)=x22axa,则方程f(x)=0的两个根,就是抛物线y=f(x)与x轴的两个交点的横坐标,如图517,01,2的充要条件是:(四)小结1讨论一元二次方程的根的分布情况时,往往归结为不等式(组)的求解问题,其方法有3种:(1)应用求根公式;(2)应用根与系数关系;(3)应用二次函数图象在进行转化时,应保证这种转化的等价性2就这三种方法而言,应用二次函数图象和性质应是比较简捷的一种方法设f(x)=ax2bxc(a0),方程ax2bxc=0的两个根为,(),m,n为常数,且nm,方程根的分布无外乎两种情况:3在确定充要条件时,注意数形结合,往往收到事半功倍的效果(五)作业1已知关于x的方程3x2(m5)x7=0的一个根大于4,而另一个根小于4,求实数m的取值范围一根大于4,另一根小于4的充要条件是:f(4)0)2已知关于x的方程x22mx2m3=0的两个不等实根都在区间(0,2)内,求实数m的取值范围3已知关于x的方程3x25xa=0的有两个实根,满足条件(2,0),(1,3),求实数a的取值范围(12a0提示:令f(x)=3x25xa,由图象特征可知方程f(x)=0的两* 4已知关于x的方程(m1)x22mxm2m6=0有两个实根,且满足01,求实数m的取值范围则方程f(x)=0的两个根,就是抛物线y=f(x)与x轴的两个交点的横坐标如图518,01的充要条件是课堂教学设计说明1数学是研究现实世界空间形式和数量关系的科学,简单地说就是“数”与“形”,“数与形”之间是有紧密联系的,是可以相互转化的数形结合的思想是中学数学中要求学生必须掌握的一种数学思想,同时也是高考中的必考内容,可以说在高考中对数学能力的考查主要体现在对数学思想方法的考查上,因此在日常教学中应注重对学生进行数学思想的培养2在应用数形结合思想解决与方程、不等式有关的问题时,应考虑设辅助函数、利用函数图象来解决应用数形结合,往往收到事半功倍的效果,但在进行转化时要注意等价转化在教学过程中体现教师是主
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 碳化钛制备工节假日前安全考核试卷含答案
- 热带作物栽培工节假日前安全考核试卷含答案
- 井矿盐采卤工中秋节后复工安全考核试卷含答案
- 小学数学课程标准与教材内容深度解读
- 关于英语话题作文600字集合10篇
- 关于语文教师教学总结七篇
- 续封协议书6篇
- 专科中药方剂手册及临床应用指南
- 操作系统期末综合试题与讲解
- 打桩工安全教育考试试卷
- JJG 425-2003水准仪
- 自动驾驶汽车-课件
- 2023年安康市交通建设投资集团有限公司招聘笔试题库及答案解析
- 砖混框架房屋拆除专项施工方案
- 学生学习力评价量表
- 藏餐培训教学计划5篇
- 技术需求征集表
- 三年级上册美术课件-第1课 五星红旗我为你骄傲|辽海版
- 中职心理健康教育第一课-PPT课件
- 文化引领学校特色化课程体系的建构
- 安全现场文明施工措施费用清单
评论
0/150
提交评论