




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
10已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是ABCD5若焦点在轴上的椭圆的离心率为,则m=( )ABCD6、抛物线上的一点M到焦点的距离为1,则点M的纵坐标是( )A B C D011、点在椭圆的左准线上,过点P且方向为的光线经直线反射后通过椭圆的左焦点,则这个椭圆的离心率为( )A B C D(12)设直线l:2x+y+2=0,关于原点对称的直线为l,若l与椭圆x2+y2=1的交点为A、B,点P为椭圆上的动点,则使APB面积为的点P的个数为(A)1(B)2(C)3(D)4(5)设双曲线以椭圆长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为(A) (B) (C) (D)(6)从集合1,2,3,11中任选两个元素作为椭圆方程中的m和n,则能组成落在矩形区域B=(x,y)| |x|11且|y|0,b0)的右交点为F,右准线l与两条渐近线交于P、Q两点,若PQF是直角三角形,则双曲线的离心率e=_。16以下同个关于圆锥曲线的命题中设A、B为两个定点,k为非零常数,则动点P的轨迹为双曲线;设定圆C上一定点A作圆的动点弦AB,O为坐标原点,若则动点P的轨迹为椭圆;方程的两根可分别作为椭圆和双曲线的离心率;双曲线有相同的焦点.其中真命题的序号为 (写出所有真命题的序号)22(本小题满分14分)如图,设抛物线的焦点为F,动点P在直线上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.(1)求APB的重心G的轨迹方程.(2)证明PFA=PFB.19(本小题满分14分)已知椭圆C:1(ab0)的左右焦点为F1、F2,离心率为e. 直线l:yexa与x轴y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设. ()证明:1e2; ()确定的值,使得PF1F2是等腰三角形.21)(本小题满分14分) P、Q、M、N四点都在椭圆上,F为椭圆在y轴正半轴上的焦点.已知与 共线, 与共线,且 = 0.求四边形PMQN 的面积的最小值和最大值.(21)(本小题满分14分)抛物线C的方程为,过抛物线C上一点P(x0,y0)(x00)作斜率为k1,k2的两条直线分别交抛物线C于A(x1,y1)B(x2,y2)两点(P,A,B三点互不相同),且满足。()求抛物线C的焦点坐标和准线方程()设直线AB上一点M,满足,证明线段PM的中点在y轴上()当=1时,若点P的坐标为(1,-1),求PAB为钝角时点A的纵坐标的取值范围21(本小题满分12分)已知椭圆C1的方程为,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点. ()求双曲线C2的方程;()若直线与椭圆C1及双曲线C2都恒有两个不同的交点,且l与C2的两个交点A和B满足(其中O为原点),求k的取值范围.17如图,已知椭圆的中心在坐标原点,焦点F1,F2在x轴上,长轴A1A2的长为4,左准线l与x轴的交点为M,|MA1|A1F1|21 ()求椭圆的方程; ()若直线l1:xm(|m|1),P为l1上的动点,使F1PF2最大的点P记为Q,求点Q的坐标(用m表示) 19、(本小题满分12分)如图,圆与圆的半径都是1,过动点P分别作圆、圆的切线PM、PN(M、N分别为切点),使得。试建立适当的坐标系,并求动点P的轨迹方程。22)(本小题满分14分)已知动圆过定点(,0),且与直线x=-相切,其中p0。()求动圆圆心的轨迹C的方程;()设A、B是轨迹C上异于原点O的两个不同点,直线OA和 OB的倾斜角分别为和,当、变化且为定值(00)与直线l2:ykx之间的阴影区域(不含边界)记为W,其左半部分记为W1,右半部分记为W2(I)分别用不等式组表示W1和W2;(II)若区域W中的动点P(x,y)到l1,l2的距离之积等于d2,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工商银行2025秋招无领导模拟题角色攻略安徽地区
- 2025年3D打印技术的工业应用扩展
- 中国银行2025秦皇岛市秋招面试典型题目及参考答案
- 辅导员入职培训课件
- 交通银行2025黑河市秋招面试典型题目及参考答案
- 2025行业国际竞争力分析
- 工商银行2025上饶市小语种岗笔试题及答案
- 邮储银行2025阜阳市秋招英文面试题库及高分回答
- 工商银行2025秋招无领导小组面试案例库陕西地区
- 中国银行2025周口市秋招笔试英语题专练及答案
- 2025年中国电信集团招聘考试试题及答案全收录
- 成都市新都区部分单位2025年8月公开招聘编外(聘用)人员(三)(20人)备考练习试题及答案解析
- 浙江省G12名校协作体2025学年第一学期9月高三上学期开学联考数学试卷
- 人教PEP版(一起)(2024)一年级上册英语全册教案
- (9月3日)铭记历史珍爱和平-纪念中国人民抗日战争暨世界反法西斯战争胜利80周年爱国主义主题教育班会课件
- 租户消防安全知识培训课件
- 2025广东汕尾市海丰县纪委监委招聘政府聘员6人笔试模拟试题及答案解析
- 《食堂食品安全管理制度》知识培训
- 《大学生就业指导》课件第六章 就业权益与法律保障
- 2025年事业单位招聘工作人员考试笔试试题(含答案)
- 纪念中国人民抗日战争胜利80周年心得体会
评论
0/150
提交评论