




免费预览已结束,剩余3页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数的单调性和奇偶性例 1( 1)画出函数y -x2+2 x +3 的图像,并指出函数的单调区间解:函数图像如下图所示,当 x0 时,y -x 2 +2x+3 (-x-1 )2+4 ;当 x 0 时,y -x 2 -2x+3-( x+1 )2+4 在( -,-1 和 0,1 上,函数是增函数:在-1 ,0和 1,+)上, 函数是减函数评析函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上( 2)已知函数f( x) x2 +2( a-1 )x+2 在区间( -, 4上是减函数,求实数a 的 取值范围分析要充分运用函数的单调性是以对称轴为界线这一特征解: f( x) x 2+2 ( a-1) x+2 x+(a-1 ) -( a-1 ) 2+2 ,此二次函数的对称轴是x1-a 因为在区间(-, 1-a 上 f( x)是单调递减的,若使f( x)在( -, 4 上单调递减,对称轴x 1-a 必须在 x=4 的右侧或与其重合,即1-a 4, a -3 评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合-可编辑修改 -例 2判断下列函数的奇偶性:( 1) f( x)-( 2) f( x)( x-1 ) 解: (1 ) f( x)的定义域为r因为f( -x ) -x+1 - -x-1 x-1 - x+1 -f ( x) 所以 f( x)为奇函数( 2) f( x)的定义域为x -1 x1 ,不关于原点对称所以f(x)既不是奇函数, 也不是偶函数评析用定义判断函数的奇偶性的步骤与方法如下:( 1)求函数的定义域,并考查定义域是否关于原点对称( 2)计算 f( -x ),并与f(x)比较,判断f( -x ) f( x)或 f( -x ) -f( x)之一是否成立 f( -x )与 -f( x)的关系并不明确时,可考查f( -x )f(x) 0 是否成立,从而判断函数的奇偶性例 3已知函数f( x)( 1)判断 f( x)的奇偶性( 2)确定 f( x)在( -,0 )上是增函数还是减函数? 在区间( 0 , +)上呢 ?证明你的结论解: 因为 f(x)的定义域为r,又f( -x ) f( x), 所以 f( x)为偶函数( 2) f( x)在( -, 0 )上是增函数,由于f( x)为偶函数,所以f( x)在( 0,+) 上为减函数其证明:取x1 x2 0 ,f( x 1) -f( x 2)- 因为 x 1 x 2 0,所以x2 -x 1 0, x 1+x 2 0, x2 1+1 0, x 22+1 0 ,得f( x 1) -f ( x 2) 0 ,即 f(x 1) f( x2) 所以 f( x)在( -, 0 )上为增函数评析奇函数在( a,b )上的单调性与在(-b,-a )上的单调性相同,偶函数在(a,b )与(-b,-a )的单调性相反例 4已知 y=f (x)是奇函数,它在(0,+)上是增函数,且f(x) 0 ,试问 f( x)在( -, 0 )上是增函数还是减函数? 证明你的结论分析根据函数的增减性的定义,可以任取x1 x 2 0 ,进而判定f( x1)-f( x2 )-的正负为此,需分别判定f( x 1)、f( x2 )与 f( x 2)的正负, 而这可以从已条件中推出解: 任取 x1 、x2 ( -, 0 )且 x1 x2 ,则有 -x 1 -x 2 0 y f( x)在( 0 ,+ )上是增函数,且f( x) 0 , f( -x 2 ) f( -x 1 ) 0 又 f( x)是奇函数, f( -x 2 ) -f( x2 ), f( -x1 ) -f( x 1)由 、 得f( x2 ) f(x 1) 0于是f( x1) -f ( x 2) 0,即 f( x1 ) f( x 2),所 以 f( x)在( -, 0 )上是减函数评析本题最容易发生的错误,是受已知条件的影响,一开始就在(0,+)内任取x1x 2 ,展开证明这样就不能保证-x 1 , -x 2,在( -, 0 )内的任意性而导致错误 避免错误的方法是:要明确证明的目标,有针对性地展开证明活动例 5讨论函数f( x)( a 0 )在区间( -1 , 1 )内的单调性分析根据函数的单调性定义求解解: 设-1 x 1 x 2,则f( x 1) -f( x 2)- x1 ,x 2 ( -1 ,1 ),且 x1 x , x1 -x 20 , 1+x 1x2 0,( 1-x 2 1)( 1-x 2 2) 0于是,当a 0 时, f( x 1) f( x2 );当 a 0 时, f( x 1) f( x2)故当 a 0 时,函数在(-1, 1 )上是增函数;当a0 时,函数在(-1 ,1)上为减函数评析根据定义讨论(或证明)函数的单调性的一般步骤是:( 1)设 x 1、x 2 是给定区间内任意两个值,且x1 x2 ;( 2)作差 f( x1 ) -f( x2 ),并将此差式变形;( 3)判断 f( x1 ) -f( x2 )的正负,从而确定函数的单调性例 6求证: f( x) x+( k0 )在区间( 0 , k上单调递减 解: 设 0 x 1x 2k ,则f( x 1) -f( x 2) x 1+-x 2- 0 x1 x2 k , x1 -x 20 , 0 x1 x2 k 2, f( x 1) -f( x 2) 0 f( x 1) f(x 2), f( x) x+中( 0 , k上是减函数评析函数 f( x)在给定区间上的单调性反映了函数f(x)在区间上函数值的变化趋势, 是函数在区间上的整体性质因此,若要证明f( x)在 a,b 上是增函数(减函数),就必须证明对于区间 a,b 上任意两点 x 1, x2 ,当 x 1 x 2 时,都有不等式 f( x 1) f( x 2)(f( x 1) f( x2 ) 类似可以证明:函数 f( x) x+( k 0)在区间 k, +上是增函数例 7判断函数f( x)的奇偶性 分析确定函数的定义域后可脱去绝对值符号解: 由得函数的定义域为-1 , 1 这时,x-2 2-x f( x), f( -x )f( x)且注意到 f(x)不恒为零,从而可知, f( x)是偶函数,不是奇函数 评析 由于函数解析式中的绝对值使得所给函数不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天宇奥数考试题及答案
- 苏科版2024-2025学年八年级下学期数学期末考试考前预测卷(一)(含答案)
- 第41个教师节校长讲话:躬耕教坛育桃李赓续初心启新篇
- 2025秋季开学第一课(开学典礼)暨校长思政课:从抗战精神中汲取力量以青春之名续写强国华章
- 2025年高级护理技能与评估考试试题及答案
- 《数字政府统一基础运维规范 第4部分:政务外网网络安全服务要求》编制说明
- 社工演讲笔试题及答案
- 棉纺工艺考试题库及答案
- 医疗资源智能配置-洞察及研究
- 设立开放日管理办法
- (9月10日)师者如光虽微致远-2025年教师节主题班会课件-2025-2026学年高中主题班会课件
- 2025秋外研新版三起点小学英语四年级上册教学计划
- 2025-2026学年人教版(2024)初中数学八年级上册教学计划及进度表
- 2025秋部编版二年级上册语文教学计划+教学进度表
- 智慧城市管理技术专业教学标准(高等职业教育专科)2025修订
- 校方责任险课件
- 拟经营的食品种类、存放地点
- 《高等数学》全册教案教学设计
- 血栓弹力图-PPT课件
- 十八项核心制度完整版
- 一、问题解决型课题QC小组成果案例
评论
0/150
提交评论